RESUMEN
ETHNOPHARMACOLOGICAL RELEVANCE: Ginseng has historically been utilized as a conventional herbal remedy and dietary supplement to enhance physical stamina and alleviate fatigue. The primary active component of Ginseng, Ginsenoside Rg3 (GS-Rg3), possesses diverse pharmacological properties including immune modulation and anti-inflammatory effects. Furthermore, GS-Rg3 has demonstrated efficacy in mitigating tissue and organ damage associated with metabolic disorders such as hypertension, hyperglycemia, and hyperlipidemia. Nevertheless, its potential impact on high-altitude cardiac injury (HACI) remains insufficiently explored. AIM OF THE STUDY: The aim of this study was to examine the potential cardioprotective effects of Ginsenoside Rg3, and to investigate how Ginsenoside Rg3 preconditioning can enhance high-altitude cardiac injury by inhibiting the RhoA/ROCK pathway and ferroptosis in cardiac tissue. The findings of this study may contribute to the development of novel therapeutic strategies using traditional Chinese medicine for high-altitude cardiac injury, based on experimental evidence. MATERIALS AND METHODS: A hypobaric hypoxia chamber was employed to simulate hypobaric hypoxia conditions equivalent to an altitude of 6000 m. Through a randomization process, groups of six male mice were assigned to receive either saline, Ginsenoside Rg3 at doses of 15 mg/kg or 30 mg/kg, or lysophosphatidic acid (LPA) at 1 mg/kg. The impact of Ginsenoside Rg3 on high altitude-induced arrhythmias was evaluated using electrocardiography. Cardiac pathology sections stained with hematoxylin and eosin were evaluated for damage, with the extent of cardiomyocyte damage observed via transmission electron microscopy. The impact of Ginsenoside Rg3 on high-altitude cardiac injury was investigated through analysis of serum biomarkers for cardiac injury (CK-MB, BNP), inflammatory cytokines (TNF, IL-6, IL-1ß), reactive oxygen species (ROS) and glutathione (GSH). The expression levels of hypoxia and hypoxia-related proteins in myocardial tissues from each experimental group were assessed using Western blot analysis. Following a review of the existing literature, the traditional regulatory mechanisms of ferroptosis were examined. Immunofluorescence staining of cardiac tissues and Western blotting techniques were utilized to investigate the impact of Ginsenoside Rg3 on cardiomyocyte ferroptosis through the RhoA/ROCK signaling pathway under conditions of hypobaric hypoxia exposure. RESULTS: Pre-treatment with Ginsenoside Rg3 improved high altitude-induced arrhythmias, reduced cardiomyocyte damage, decreased cardiac injury biomarkers and inflammatory cytokines, and lowered the expression of hypoxia-related proteins in myocardial tissues. Both Western blotting and immunofluorescence staining of cardiac tissues demonstrated that exposure to high-altitude hypobaric hypoxia results in elevated expression of ferroptosis and proteins related to the RhoA/ROCK pathway. Experimental validation corroborated that the role of the RhoA/ROCK signaling pathway in mediating ferroptosis. CONCLUSIONS: The findings of our study suggest that preconditioning with Ginsenoside Rg3 may attenuate cardiac injury caused by high-altitude hypobaric hypoxia exposure in mice by inhibiting ferroptosis through the suppression of the RhoA/ROCK signaling pathway. These findings contribute to the current knowledge of Ginsenoside Rg3 and high-altitude cardiac injury, suggesting that Ginsenoside Rg3 shows potential as a therapeutic agent for high-altitude cardiac injury.
RESUMEN
High-altitude pulmonary edema (HAPE) is a life-threatening disease, and autophagy deficiency is implicated in the pathogenesis of HAPE. Eleutheroside B (EB), which is the main bioactive component of Acanthopanax senticosus, exhibits various pharmacological activities. Our previous research demonstrated that autophagic structures were widely found in the ultrastructure of lung tissue in HAPE rats. However, whether EB regulates autophagy deficiency in HAPE remains unknown. This study aimed to investigate the protective effects of EB on hypobaric hypoxia-induced HAPE and explore the underlying molecular mechanism of regulating autophagy. The rat model of high-altitude pulmonary edema was replicated using a hypobaric hypoxic chamber. Rats were pretreated with EB or in combination with chloroquine or compound C. The pulmonary edema was assessed by the lung wet/dry ratio, total protein concentration in bronchoalveolar lavage fluid, and histological analysis. Inflammation and oxidative stress were measured using commercial biochemical kits. Autophagy and autophagic flux were evaluated by western blotting, transmission electron microscopy, and adeno-associated virus-mRFP-GFP-labeled tandem fluorescence LC3. The AMPK/mTOR signaling pathway was detected by western blotting. EB alleviated hypobaric hypoxia-induced pulmonary edema, hypoxemia, acid-base imbalance in the blood, inflammation, and oxidative stress in a dose-dependent manner. EB restored impaired autophagic flux by activating the AMPK/mTOR signaling pathway. However, chloroquine or compound C abolished eleutheroside B-mediated autophagy flux restoration. EB has the potential to restore impaired autophagic flux in the lung of hypobaric hypoxia-induced HAPE rats, which could be attributed to the activation of AMPK/mTOR signaling pathway.
RESUMEN
High-altitude myocardial injury (HAMI) represents a critical form of altitude illness for which effective drug therapies are generally lacking. Notoginsenoside R1, a prominent constituent derived from Panax notoginseng, has demonstrated various cardioprotective properties in models of myocardial ischemia/reperfusion injury, sepsis-induced cardiomyopathy, cardiac fibrosis, and myocardial injury. The potential utility of notoginsenoside R1 in the management of HAMI warrants prompt investigation. Following the successful construction of a HAMI model, a series of experimental analyses were conducted to assess the effects of notoginsenoside R1 at dosages of 50â¯mg/Kg and 100â¯mg/Kg. The results indicated that notoginsenoside R1 exhibited protective effects against hypoxic injury by reducing levels of CK, CK-MB, LDH, and BNP, leading to improved cardiac function and decreased incidence of arrhythmias. Furthermore, notoginsenoside R1 was found to enhance Nrf2 nuclear translocation, subsequently regulating the SLC7A11/GPX4/HO-1 pathway and iron metabolism to mitigate ferroptosis, thereby mitigating cardiac inflammation and oxidative stress induced by high-altitude conditions. In addition, the application of ML385 has confirmed the involvement of Nrf2 nuclear translocation in the therapeutic approach to HAMI. Collectively, the advantageous impacts of notoginsenoside R1 on HAMI have been linked to the suppression of ferroptosis via Nrf2 nuclear translocation signaling.
Asunto(s)
Ferroptosis , Ginsenósidos , Proteína 1 Asociada A ECH Tipo Kelch , Factor 2 Relacionado con NF-E2 , Transducción de Señal , Factor 2 Relacionado con NF-E2/metabolismo , Ginsenósidos/farmacología , Animales , Ferroptosis/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Masculino , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Estrés Oxidativo/efectos de los fármacos , Ratas Sprague-Dawley , Mal de Altura/tratamiento farmacológico , Mal de Altura/metabolismo , Ratas , Altitud , Modelos Animales de EnfermedadRESUMEN
Eleutheroside E (EE) is a primary active component of Acanthopanax senticosus, which has been reported to inhibit the expression of inflammatory genes, but the underlying mechanisms remain elusive. High-altitude pulmonary edema (HAPE) is a severe complication of high-altitude exposure occurring after ascent above 2500 m. However, effective and safe preventative measures for HAPE still need to be improved. This study aimed to elucidate the preventative potential and underlying mechanism of EE in HAPE. Rat models of HAPE were established through hypobaric hypoxia. Mechanistically, hypobaric hypoxia aggravates oxidative stress and upregulates (pro)-inflammatory cytokines, activating NOD-like receptor protein 3 (NLRP3) inflammasome-mediated pyroptosis, eventually leading to HAPE. EE suppressed NLRP3 inflammasome-mediated pyroptosis by inhibiting the nuclear translocation of nuclear factor kappa-Β (NF-κB), thereby protecting the lung from HAPE. However, nigericin (Nig), an NLRP3 activator, partially abolished the protective effects of EE. These findings suggest EE is a promising agent for preventing HAPE induced by NLRP3 inflammasome-mediated pyroptosis.
RESUMEN
High-altitude pulmonary edema (HAPE) is a potentially fatal disease. Notoginsenoside R1 is a novel phytoestrogen with anti-inflammatory, antioxidant and anti-apoptosis properties. However, its effects and underlying mechanisms in the protection of hypobaric hypoxia-induced HAPE rats remains unclear. This study aimed to explore the protective effects and underlying mechanisms of Notoginsenoside R1 in hypobaric hypoxia-induced HAPE. We found that Notoginsenoside R1 alleviated the lung tissue injury, decreased lung wet/dry ratio, and reduced inflammation and oxidative stress. Additionally, Notoginsenoside R1 ameliorated the changes in arterial blood gas, decreased the total protein concentration in bronchoalveolar lavage fluid, and inhibited the occurrence of apoptosis caused by HAPE. In the process of further exploration of the mechanism, it was found that Notoginsenoside R1 could promote the activation of ERK1/2-P90rsk-BAD signaling pathway, and the effect of Notoginsenoside R1 was attenuated after the use of ERK1/2 inhibitor U0126. Our study indicated that the protective effects of Notoginsenoside R1 against HAPE were mainly related to the inhibition of inflammation, oxidative stress, and apoptosis. Notoginsenoside R1 may be a potential candidate for preventing HAPE.
Asunto(s)
Altitud , Edema Pulmonar , Ratas , Animales , Sistema de Señalización de MAP Quinasas , Edema Pulmonar/prevención & control , Hipoxia/complicaciones , Hipoxia/metabolismo , InflamaciónRESUMEN
Eleutheroside E, a major natural bioactive compound in Acanthopanax senticosus (Rupr.etMaxim.) Harms, possesses anti-oxidative, anti-fatigue, anti-inflammatory, anti-bacterial and immunoregulatory effects. High-altitude hypobaric hypoxia affects blood flow and oxygen utilisation, resulting in severe heart injury that cannot be reversed, thereby eventually causing or exacerbating high-altitude heart disease and heart failure. The purpose of this study was to determine the cardioprotective effects of eleutheroside E against high-altitude-induced heart injury (HAHI), and to study the mechanisms by which this happens. A hypobaric hypoxia chamber was used in the study to simulate hypobaric hypoxia at the high altitude of 6000 m. 42 male rats were randomly assigned to 6 equal groups and pre-treated with saline, eleutheroside E 100 mg/kg, eleutheroside E 50 mg/kg, or nigericin 4 mg/kg. Eleutheroside E exhibited significant dose-dependent effects on a rat model of HAHI by suppressing inflammation and pyroptosis. Eleutheroside E downregulated the expressions of brain natriuretic peptide (BNP), creatine kinase isoenzymes (CK-MB) and lactic dehydrogenase (LDH). Moreover, The ECG also showed eleutheroside E improved the changes in QT interval, corrected QT interval, QRS interval and heart rate. Eleutheroside E remarkably suppressed the expressions of NLRP3/caspase-1-related proteins and pro-inflammatory factors in heart tissue of the model rats. Nigericin, known as an agonist of NLRP3 inflammasome-mediated pyroptosis, reversed the effects of eleutheroside E. Eleutheroside E prevented HAHI and inhibited inflammation and pyroptosis via the NLRP3/caspase-1 signalling pathway. Taken together, eleutheroside E is a prospective, effective, safe and inexpensive agent that can be used to treat HAHI.
Asunto(s)
Eleutherococcus , Lesiones Cardíacas , Masculino , Ratas , Animales , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Piroptosis , Caspasa 1/metabolismo , Altitud , Nigericina/farmacología , Estudios Prospectivos , Antiinflamatorios/farmacología , Inflamación , HipoxiaRESUMEN
Ambient fine particulate matter (PM2.5) is considered a leading cause of pathogenic particulate matter induced lung injury. And Salidroside (Sal), the major bioactive constituent isolated from Rhodiola rosea L., has been shown to ameliorate lung injury in various conditions. To uncover the possible therapy for PM2.5 related pulmonary disease, we evaluated the protective role of Sal pre-treatment on PM2.5 induced lung injury in mice by utilizing the survival analysis, hematoxylin and eosin (H&E) staining, lung injury score, lung wet-to-dry weight ratio, enzyme-linked immunosorbent assay (ELISA) kits, immunoblot, immunofluorescence, and transmission electron microscopy (TEM). Impressively, our findings strongly indicated Sal as an effective precaution against PM2.5 induced lung injury. Pre-administration of Sal before PM2.5 treatment reduced the mortality within 120 h and alleviated inflammatory responses by reducing the release of proinflammatory cytokines, including TNF-α, IL-1ß, and IL-18. Meanwhile, Sal pretreatment blocked apoptosis and pyroptosis that introduced the tissue damage under PM2.5 treatment via regulating Bax/Bcl-2/caspase-3 and NF-κB/NLRP3/caspase-1 signal pathways. In summary, our research demonstrated that Sal could be a potential preventative therapy for PM2.5 caused lung injury by inhibiting the initiation and development of apoptosis and pyroptosis through down-regulating NLRP3 inflammasome pathway.
Asunto(s)
Inflamasomas , Lesión Pulmonar , Ratones , Animales , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Piroptosis , Lesión Pulmonar/inducido químicamente , Lesión Pulmonar/tratamiento farmacológico , Lesión Pulmonar/prevención & control , Pulmón , Apoptosis , Material Particulado/toxicidadRESUMEN
Fine particulate matter (PM2.5) contributes to adverse health effects through the promotion of inflammatory cytokine release. Rosavidin (Ro), a phenylpropanoid compound having multiple biological activities, is extracted from Rhodiola crenulata, a medicine and food homology plant. However, the protective role and mechanism of Ro in PM2.5-induced lung toxicity have not been previously studied. This study aimed to investigate the potential protective effect and mechanism of Ro in PM2.5-induced lung toxicity. A lung toxicity rat model was established through trachea drip of PM2.5 suspension after the different dose pretreatment of Ro (50 mg/kg and 100 mg/kg) to evaluate the effect of Ro on PM2.5 caused lung toxicity. The results showed that Ro attenuated the pathological changes, edema, and inflammation response in rats. The PI3K/AKT signaling pathway may be associated with the protective effect of Ro against pulmonary toxicity. Subsequently, we verified the role of PI3K/AKT in the PM2.5 exposure lung tissue. Moreover, expression levels of p-PI3K and p-AKT were lower, and those of NLRP3, ASC, cleaved caspase-1, cleaved IL-1ß, and GSDMD-N were higher in PM2.5 group compared to those in control group. Whereas pre-administration of Ro reversed the expression trends of these proteins in lung tissue. Notably, those protective effects of Ro were not observed after pretreatment with a combination of Ro with nigericin or LY294002. These results indicate that Ro mitigates PM2.5-caused lung toxicity by inhibiting NLRP3 inflammasome-mediated pyroptosis through activation of the PI3K/AKT signaling pathway.
Asunto(s)
Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Ratas , Animales , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteínas Proto-Oncogénicas c-akt , Fosfatidilinositol 3-Quinasas , Piroptosis , Pulmón , Material Particulado/toxicidadRESUMEN
Exposure to fine particulate matter (PM2.5), an environmental pollutant, significantly contributes to the incidence of and risk of mortality associated with respiratory diseases. Sipeimine (Sip) is a steroidal alkaloid in fritillaries that exerts antioxidative and anti-inflammatory effects. However, protective effect of Sip for lung toxicity and its mechanism to date remains poorly understood. In the present study, we investigated the lung-protective effect of Sip via establishing the lung toxicity model of rats with orotracheal instillation of PM2.5 (7.5 mg/kg) suspension. Sprague-Dawley rats were intraperitoneally administered with Sip (15 mg/kg or 30 mg/kg) or vehicle daily for 3 days before instillation of PM2.5 suspension to establish the model of lung toxicity. The results found that Sip significantly improved pathological damage of lung tissue, mitigated inflammatory response, and inhibited lung tissue pyroptosis. We also found that PM2.5 activated the NLRP3 inflammasome as evidenced by the upregulation levels of NLRP3, cleaved-caspase-1, and ASC proteins. Importantly, PM2.5 could trigger pyroptosis by increased levels of pyroptosis-related proteins, including IL-1ß, cleaved IL-1ß, and GSDMD-N, membrane pore formation, and mitochondrial swelling. As expected, all these deleterious alterations were reversed by Sip pretreatment. These effects of Sip were blocked by the NLRP3 activator nigericin. Moreover, network pharmacology analysis showed that Sip may function via the PI3K/AKT signaling pathway and animal experiment validate the results, which revealed that Sip inhibited NLRP3 inflammasome-mediated pyroptosis by suppressing the phosphorylation of PI3K and AKT. Our findings demonstrated that Sip inhibited NLRP3-mediated cell pyroptosis through activation of the PI3K/AKT pathway in PM2.5-induced lung toxicity, which has a promising application value and development prospect against lung injury in the future.
Asunto(s)
Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Ratas , Animales , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Piroptosis , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Ratas Sprague-Dawley , Pulmón/metabolismo , Material Particulado/toxicidadRESUMEN
Inflammation and oxidative stress caused by fine particulate matter (PM2.5) increase the incidence and mortality rates of respiratory disorders. Rosavin is the main chemical component of Rhodiola plants, which exerts anti-oxidative and antiinflammatory effects. In this research, the potential therapeutic effect of rosavin was investigated by the PM2.5-induced lung injury rat model. Rats were instilled with PM2.5 (7.5 mg/kg) suspension intratracheally, while rosavin (50 mg/kg, 100 mg/kg) was delivered by intraperitoneal injection before the PM2.5 injection. It was observed that rosavin could prevent lung injury caused by PM2.5. PM2.5 showed obvious ferroptosis-related ultrastructural alterations, which were significantly corrected by rosavin. The pretreatment with rosavin downregulated the levels of tissue iron, malondialdehyde, and 4-hydroxynonenal, and increased the levels of glutathione. The expression of nuclear factor E2-related factor 2 (Nrf2) was upregulated by rosavin, together with other ferroptosis-related proteins. RSL3, a specific ferroptosis agonist, reversed the beneficial impact of rosavin. The network pharmacology approach predicted the activation of rosavin on the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway. LY294002, a potent PI3K inhibitor, decreased the upregulation of Nrf2 induced by rosavin. In conclusion, rosavin prevented lung injury induced by PM2.5 stimulation and suppressed ferroptosis via upregulating PI3K/Akt/Nrf2 signaling pathway.
Asunto(s)
Lesión Pulmonar , Proteínas Proto-Oncogénicas c-akt , Ratas , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasa/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Lesión Pulmonar/tratamiento farmacológico , Factor 2 Relacionado con NF-E2/metabolismo , Transducción de Señal , Estrés Oxidativo , Material Particulado/toxicidadRESUMEN
High altitude pulmonary edema (HAPE) is a potentially fatal condition induced by exposure to high-altitude environment. Eleutheroside B is a naturally active polyphenolic substance that has previously demonstrated anti-inflammatory, antioxidant and antidepressant properties. However, the effects of eleutheroside B on HPAE are unknown. Here, eleutheroside B (50 mg/kg and 100 mg/kg) was applied to HAPE rats. Eleutheroside B alleviated lung edema and decreased levels of tumor necrosis factor-α, interleukin-1ß, vascular endothelial growth factor, and total proteins in the bronchoalveolar lavage fluid. Eleutheroside B reversed the acid-base disturbances by HAPE. In addition, eleutheroside B reversed the oxidative stress. Eleutheroside B pretreatment facilitated the translocation of nuclear factor E2-related factor 2 (Nrf2) into the nucleus, contributing to the inhibition of ferroptosis and necroptosis. ML385 confirmed the role of Nrf2 in ferroptosis and necroptosis. Collectively, the beneficial effects of eleutheroside B against HAPE were associated with the inhibition of ferroptosis and necroptosis through Nrf2-antioxidant response signaling.
Asunto(s)
Ferroptosis , Edema Pulmonar , Ratas , Animales , Factor 2 Relacionado con NF-E2 , Edema Pulmonar/tratamiento farmacológico , Antioxidantes/farmacología , Altitud , Necroptosis , Factor A de Crecimiento Endotelial VascularRESUMEN
Background: Although increasing clinical trials studying Shenfu injection (SFI) comprising panaxoside 0.8 mg/ml extracted from Panax ginseng C.A. Mey. and aconitine 0.1 mg/ml extracted from Aconitum carmichaeli Debeaux for elderly patients with severe pneumonia on biomarkers associated with COVID-19 progression are emerging, there is no evidence-based evaluation for the effect of SFI on elderly severe pneumonia. Objectives: To evaluate the effect of SFI on elderly patients with severe pneumonia providing hints for treating critical COVID-19, we conducted a systematic review and meta-analysis. Methods: Nine databases, namely, PubMed, EMBASE, Web of Science, Science Direct, Google Scholar, Wanfang, Chongqing VIP Database, CNKI, and SinoMed were used to search clinical trials reporting the effect of SFI as an adjuvant for elderly severe pneumonia on outcomes of interest. Primary outcomes were total effective rate, Acute Physiology and Chronic Health Evaluation (APACHE) II score, mortality, and safety. Secondary outcomes were predictors associated with COVID-19 progression. Duplicated or irrelevant articles with unavailable data were excluded. Cochrane Collaboration's tool was used to evaluate the risk of bias by two reviewers independently. All data were analyzed by Rev Man 5.4. Continuous variables were shown as weighted mean difference (WMD) or standard mean difference (SMD) with 95% confidence intervals (95% CI), whereas dichotomous data were calculated as the risk ratio (RR) with 95% CI. Results: We included 20 studies with 1, 909 participants, and the pooled data showed that compared with standard control, SFI could improve the total effective rate (RR = 1.25, 95% CI = 1.14-1.37, and n = 689), APACHE II score (WMD = -2.95, 95% CI = -3.35, -2.56, and n = 809), and predictors associated with COVID-19 progression (brain natriuretic peptide, creatine kinase, stroke volume, cardiac output, left ventricular ejection fraction, cardiac index, sE-selectin, von Willebrand factor, activated partial thromboplastin time, platelet counts, D-Dimer, procalcitonin, and WBC count). SFI may reduce mortality (RR = 0.52, 95% CI = 0.37-0.73, and n = 429) and safety concerns (RR = 0.29, 95% CI = 0.17-0.51, and n = 150) for elderly severe pneumonia. Conclusion: SFI as an adjuvant may improve the total effective rate, APACHE II score, gas exchange, and predictors associated with COVID-19 progression, reducing mortality and safety concerns for elderly patients with severe pneumonia.
RESUMEN
The imbalance of intestinal microbiota and inflammatory response is crucial in the development of lung injury induced by PM2.5. In recent years, probiotics have attracted great attention for their health benefits in inflammatory diseases and regulating intestinal balance, but their intricate mechanisms need further experiments to elucidate. In our research, a rat lung damage model induced by PM2.5 exposure in real environment was established to explore the protective properties of probiotics on PM2.5 exposure injury and its related mechanism. The results indicated that compared with the AF control group, rats in the PM2.5 group gained weight slowly, ate less and had yellow hair. The results of pathological and immunohistochemical examinations showed that the inflammatory infiltration of lung tissue was alleviated after probiotic treatment. The Lung function results also showed the improvement effects of probiotics administration. In addition, probiotics could promote the balance of Th17 and Treg cells, inhibit cytokines expression (TNF-α, IL-6, IL-1ß, IL-17A), and increase the concentration of anti-inflammatory factors (IL-10, TGF-ß). In addition, 16 S rRNA sequence analysis showed that probiotic treatment could reduce microbiota abundance and diversity, increase the abundance of possible beneficial bacteria, and decrease the abundance of bacteria associated with inflammation. In general, probiotic intervention was found to have preventive effects on the occurrence of PM2.5 induced pathological injury, and the mechanism was associate with to the inhibition of inflammatory response, regulation of Th17/Treg balance and maintenance of intestinal internal environment stability.
Asunto(s)
Microbioma Gastrointestinal , Lesión Pulmonar , Neumonía , Probióticos , Animales , Antiinflamatorios/farmacología , Citocinas/metabolismo , Interleucina-10/metabolismo , Interleucina-17/metabolismo , Interleucina-6/metabolismo , Lesión Pulmonar/inducido químicamente , Lesión Pulmonar/metabolismo , Lesión Pulmonar/prevención & control , Material Particulado/metabolismo , Neumonía/inducido químicamente , Neumonía/metabolismo , Neumonía/prevención & control , Probióticos/farmacología , Ratas , Linfocitos T Reguladores/metabolismo , Células Th17 , Factor de Crecimiento Transformador beta , Factor de Necrosis Tumoral alfa/metabolismoRESUMEN
OBJECTIVE: Exposure to PM2.5 will increase the risk of respiratory disease and increase the burden of social health care. Astragaloside â £ (Ast-IV) is one of the main biologically active substances form Chinese herb Astragalus membranaceus, which owns various pharmacological effects. Ferroptosis is a novel form of cell death characterized by accumulation of iron-dependent lipid reactive oxygen species (ROS). It is not clear whether there are typical features of ferroptosis in PM2.5-induced lung injury. This study investigates whether PM2.5-induced lung injury in mice has a special form of ferroptosis and the specific protective mechanism of Ast-IV. SUBJECTS AND METHODS: Forty-two male C57BL/6J mice were randomly divided into six groups (nâ¯=â¯7 per group): NS group (normal saline), Ast group (Ast-IV 100â¯mg/kg), PM2.5 group, Ast-L group (Ast-IV 50â¯mg/kgâ¯+â¯PM2.5), Ast-H group (Ast-IV 100â¯mg/kgâ¯+â¯PM2.5) and Era group (Ast-IV 100â¯mg/kgâ¯+â¯erastin 20â¯mg/kgâ¯+â¯PM2.5). Mice were pre-treated with Ast-IV intraperitoneally for three days. Then, PM2.5 (7.5â¯mg/kg) was given by non-invasive tracheal instillation to induce lung injury. The ferroptosis' agonist erastin was used to verify the mechanism of Ast-IV anti-ferroptosis. 12â¯h after PM2.5 stimulation, the mice were euthanized. Bronchoalveolar lavage fluid (BALF) and serum were collected for oxidative stress and cytokine determination. Lung tissues were collected for glutathione (GSH), tissue iron content, histology, immunofluorescence, transmission electron microscopy, and western blot analysis. RESULTS: Ast-IV reduced the lung wet-dry ratio and the levels of interleukin 6 (IL-6), tumor necrosis factor-α (TNF-α) and interleukin 1ß (IL-1ß) in serum. Ast-IV could also improve the oxidative stress level in BALF, restore the GSH level in the lung tissue, and reduce the iron content in the lung tissue. Western blot outcomes revealed that Ast-IV regulated the ferroptosis signaling pathway via the Nrf2/SLC7A11/GPX4 axis to protect PM2.5-mediated lung injury. CONCLUSION: The protective effect of Ast-IV on PM2.5-induced lung injury in mice might be related to the inhibition of ferroptosis in lung tissue. Anti-ferroptosis might be a new mechanism of Ast-IV on PM2.5-induced lung injury.
Asunto(s)
Lesión Pulmonar , Material Particulado , Saponinas , Triterpenos , Animales , Masculino , Ratones , Glutatión , Interleucina-1beta , Interleucina-6 , Hierro , Lípidos , Lesión Pulmonar/inducido químicamente , Lesión Pulmonar/tratamiento farmacológico , Ratones Endogámicos C57BL , Factor 2 Relacionado con NF-E2/metabolismo , Material Particulado/toxicidad , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Factor de Necrosis Tumoral alfa/farmacología , Saponinas/farmacología , Triterpenos/farmacologíaRESUMEN
Fine particulate matter (PM2.5) exposure can cause lung injury and a large number of respiratory diseases. Sipeimine is a steroidal alkaloid isolated from Fritillaria roylei which has been associated with anti-inflammatory, antitussive and antiasthmatic properties. In this study, we explored the potential effects of sipeimine against PM2.5-induced lung injury in Sprague Dawley rats. Sipeimine alleviated lung injury caused by PM2.5 and decreased pulmonary edema, inflammation and the levels of tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß) in the bronchoalveolar lavage fluid. In addition, sipeimine upregulated the glutathione (GSH) expression and downregulated the expression of 4-hydroxynonenal (4-HNE), tissue iron and malondialdehyde (MDA). The downregulation of proteins involved in ferroptosis, including nuclear factor E2-related factor 2 (Nrf2), glutathione peroxidase 4 (GPX4), heme oxygenase-1 (HO-1) and solute carrier family 7 member 11 (SLC7A11) was reversed by sipeimine. The administration of RSL3, a potent ferroptosis-triggering agent, blocked the effects of sipeimine. Using network pharmacology, we found that the effects of sipeimine were presumably mediated through the phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) signaling pathway. A PI3K inhibitor (LY294002) blocked the PI3K/Akt signaling pathway and reversed the effects of sipeimine. Overall, this study suggested that the protective effect of sipeimine against PM2.5-induced lung injury was mainly mediated through the PI3K/Akt pathway, ultimately leading to a reduction in ferroptosis.
Asunto(s)
Cevanas , Ferroptosis , Lesión Pulmonar , Material Particulado , Animales , Cevanas/farmacología , Lesión Pulmonar/inducido químicamente , Lesión Pulmonar/tratamiento farmacológico , Lesión Pulmonar/patología , Factor 2 Relacionado con NF-E2/metabolismo , Farmacología en Red , Material Particulado/toxicidad , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Ratas Sprague-DawleyRESUMEN
Exposure to particulate matter (PM)2.5 in air pollution is a serious health issue worldwide. At present, effective prevention measures and modalities of treatment for PM2.5-caused lung toxicity are lacking. This study elucidated the protective effect of astragaloside IV (Ast), a natural product from Astragalus membranaceous Bunge, against PM2.5-caused lung toxicity and its possible molecular mechanisms. The mice model of lung toxicity was performed by intratracheal instillation of PM2.5 dust suspension. The investigation was performed with Ast or in combination with nigericin, which is a NOD-like receptor protein 3 (NLRP3) activator. The results revealed that PM2.5 lead significant lung inflammation and promoted the pyroptosis pattern of cell death by upregulating pro-inflammatory cytokines and causing oxidative stress related to the NLRP3 inflammasome-mediated pyroptosis pathway. Ast protected against PM2.5 resulted lung toxicity via suppressing NLRP3 inflammasome-mediated pyroptosis via NLRP3/caspase-1 axis inhibition, thereby protecting the lung against PM2.5-induced lung inflammation and oxidative damage, eventually resulting in prolonged survival in mice. Nigericin partially reversed the protective effects of Ast. The present research provides new insights into the therapeutic potential of Ast, demonstrating that it might be a possible candidate for the prevention of PM2.5-caused respiratory diseases. Targeting the NLRP3 inflammasome might be a novel therapeutic tactic for PM2.5-caused respiratory diseases.
Asunto(s)
Enfermedades Pulmonares , Proteína con Dominio Pirina 3 de la Familia NLR , Material Particulado , Neumonía , Saponinas , Triterpenos , Animales , Caspasa 1/metabolismo , Inflamasomas/antagonistas & inhibidores , Inflamasomas/metabolismo , Pulmón/efectos de los fármacos , Pulmón/patología , Enfermedades Pulmonares/inducido químicamente , Enfermedades Pulmonares/patología , Enfermedades Pulmonares/prevención & control , Ratones , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Nigericina/farmacología , Material Particulado/toxicidad , Neumonía/inducido químicamente , Neumonía/tratamiento farmacológico , Piroptosis/efectos de los fármacos , Saponinas/farmacología , Transducción de Señal/efectos de los fármacos , Triterpenos/farmacologíaRESUMEN
Background: The efficacy of conventional pharmacotherapy on osteoporosis was limited and accompanied with serious side effects. Epimedium might have the potential to be developed as agents to treat osteoporosis. The present systematic review and meta-analysis integrating Western medicine and Eastern medicine ("WE" medicine) was to evaluate the efficacy of Epimedium on osteoporosis. Methods: Eleven electronic databases were searched to identify the randomized controlled trials (RCTs) comparing Epimedium as an adjunctive or alternative versus conventional pharmacotherapy during osteoporosis. Bone mineral density (BMD), effective rate, and Visual Analog Scale (VAS) were measured as primary outcomes. The secondary outcomes were pain relief time, bone metabolic markers, and adverse events. Research quality evaluation was conducted according to the modified Jadad scale. Review Manager 5.4 was utilized to perform analyses, and the data were pooled using a random-effect or fixed-effect model to calculate the weighted mean difference (WMD), standardized mean difference (SMD), risk ratio (RR), and 95% confidence intervals (CI). Results: Twelve RCTs recruiting 1,017 patients were eligible. Overall, it was possible to verify that, in the Epimedium plus conventional pharmacotherapy group, BMD was significantly improved (p = 0.03), effective rate was significantly improved (p = 0.0001), and VAS was significantly decreased (p = 0.01) over those in control group. When compared to conventional pharmacotherapy, Epimedium used alone improved BMD (p = 0.009) and effective rate (p < 0.0001). VAS was lower (p < 0.00001), and the level of alkaline phosphatase (ALP) was significantly decreased (p = 0.01) in patients taking Epimedium alone compared with those given conventional pharmacotherapy. Results of subgroup analyses yielded that the recommended duration of Epimedium as an adjuvant was >3 months (p = 0.03), the recommended duration of Epimedium as an alternative was ≤3 months (p = 0.002), and Epimedium decoction brought more benefits (SMD = 2.33 [1.92, 2.75]) compared with other dosage forms. No significant publication bias was identified based on statistical tests (t = 0.81, p = 0.440). Conclusions: Epimedium may improve BMD and effective rate and relieve pain as an adjuvant or alternative; Epimedium as an alternative might regulate bone metabolism, especially ALP, with satisfying clinical efficacy during osteoporosis. More rigorous RCTs are warranted to confirm these results.
RESUMEN
BACKGROUND: Long-term exposure to high concentrations of PM2.5 may cause immune system dysfunction and damage to the respiratory and cardiovascular systems. PM2.5 may cause CD4 + T helper cells to polarize toward TH1 or TH2 cell types, which may be associated with the onset and progression of many human diseases. Recent studies have shown that omega-3 fatty acids can regulate human immune function and reduce physiological damage caused by air pollution; however, only limited research has examined the therapeutic effects of omega-3 fatty acids on subjects with high exposure to PM2.5 in mass transit systems such as subways. METHODS: This study was designed as a prospective, randomized, double-blinded (to participants and researchers), placebo-controlled clinical trial. The research plan is to randomly select 120 eligible adults based on the difference in PM2.5 exposure in the Chengdu subway station. They should be aged 20-65 years old and work in the subway station more than or equal to 3 times a week, each time greater than or equal to 8 h, and had worked continuously in the subway station for more than 2 years. All participants will receive omega-3 fatty acids or placebo for 8 weeks. The primary outcomes will be changes in the TH1/TH2 cell polarization index and changes in serum cytokine concentrations. Secondary outcomes will be changes in early indicators of atherosclerosis, pulmonary function, COOP/WONCA charts, and scores on the Short-Form 36 Health Survey for quality of life. Results will be analyzed to evaluate differences in clinical efficacy between the two groups. A 6-month follow-up period will be used to assess the long-term value of omega-3 fatty acids for respiratory and cardiovascular disease endpoints. DISCUSSION: We will explore the characteristics of the TH1/TH2 cell polarization index in a population with high exposure to PM2.5. Omega-3 fatty acids and placebo will be compared in many ways to test the effect on people exposed to PM2.5 subway stations. This study is expected to provide reliable evidence to support the promotion of omega-3 fatty acids in clinical practice to protect individuals who are highly exposed to PM2.5. TRIAL REGISTRATION: Chinese Clinical Trial Registry ChiCTR2000038065 . Registered on September 9, 2020.
Asunto(s)
Ácidos Grasos Omega-3 , Material Particulado , Adulto , Anciano , Método Doble Ciego , Ácidos Grasos Omega-3/efectos adversos , Humanos , Persona de Mediana Edad , Material Particulado/toxicidad , Estudios Prospectivos , Calidad de Vida , Adulto JovenRESUMEN
BACKGROUND: Fine particulate matter (PM2.5) with an aerodynamic diameter of less than 2.5 µm, exerts serious lung toxicity. At present, effective prevention measures and treatment modalities for pulmonary toxicity caused by PM2.5 are lacking. Astragaloside IV (AS-IV) is a natural product that has received increasing attention from researchers for its unique biological functions. PURPOSE: To investigate the protective effects of AS-IV on PM2.5-induced pulmonary toxicity and identify its potential mechanisms. METHODS: The rat model of PM2.5-induced lung toxicity was created by intratracheal instillation of PM2.5 dust suspension. The investigation was performed with AS-IV or in combination with autophagic flux inhibitor (Chloroquine) or AMP-sensitive protein kinase (AMPK)-specific inhibitor (Compound C). Apoptosis was detected by terminal deoxy-nucleotidyl transferase dUTP nick end labeling (TUNEL) and western blotting. Autophagy was detected by immunofluorescence staining, autophagic flux measurement, western blotting, and transmission electron microscopy. The AMPK/mTOR pathway was analyzed by western blotting. Inflammation was analyzed by western blotting and suspension array. RESULTS: AS-IV prevented histopathological injury, inflammation, autophagy dysfunction, apoptosis, and changes in AMPK levels induced by PM2.5. AS-IV increased autophagic flux and inhibited apoptosis and inflammation by activating the AMPK/ mammalian target of rapamycin (mTOR) pathway. However, AS-IV had no protective effect on PM2.5-induced lung injury following treatment with Compound C or Chloroquine. CONCLUSION: AS-IV prevented PM2.5-induced lung toxicity by restoring the balance among autophagy, apoptosis, and inflammation in rats by activating the AMPK/mTOR signaling pathway.
Asunto(s)
Lesión Pulmonar , Proteínas Quinasas Activadas por AMP , Animales , Apoptosis , Autofagia , Inflamación/tratamiento farmacológico , Lesión Pulmonar/inducido químicamente , Lesión Pulmonar/tratamiento farmacológico , Material Particulado/toxicidad , Ratas , Saponinas , TriterpenosRESUMEN
INTRODUCTION: Prolonged exposure to air polluted with airborne fine particulate matter (PM2.5) can increase respiratory disease risk. Astragaloside IV (AS-IV) is one of the main bioactive substances in the traditional Chinese medicinal herb, Astragalus membranaceus Bunge. AS-IV has numerous pharmacological properties; whereas there are few reports on the prevention of PM2.5-induced lung injury by AS-IV through modulation of the autophagic pathway. This study aimed to investigate the protective effects and the underlying mechanisms of AS-IV in PM2.5-induced lung injury rats and rat alveolar macrophages (NR8383 cells). METHODS: The pneumotoxicity model was established by intratracheal injection of PM2.5 in rats, and PM2.5 challenge in NR8383 cells. The severity of lung injury was evaluated by wet weight to dry weight ratio and McGuigan pathology scoring. Inflammatory factors and oxidative stress were detected through ELISA. The expressions of p-PI3K, p-Akt, and p-mTOR proteins were analyzed by immunohistochemistry. Immunofluorescence and transmission electron microscopy were used to detect autophagosomes. The expressions of autophagy marker protein (LC3B and p62), PI3K/Akt/mTOR signaling and NF-κB translocation were detected by Western blot in lung tissue and NR8383 cells. RESULTS: After PM2.5 stimulation, rats showed severe inflammation and oxidative stress, along with inhibition of autophagy in lung tissue. AS-IV not only decreased pulmonary inflammation and oxidative stress by inhibiting nuclear factor kappa B translocation, but also regulated autophagy by inhibiting PI3K/Akt/mTOR signaling. After treatment with 3-methyladenine (a classic PI3K inhibitor, blocking the formation of autophagosomes), the protective effect of AS-IV on PM2.5-induced lung injury was further strengthened. In parallel, using Western blot, immunohistochemistry, and transmission electron microscopy, we demonstrated that AS-IV restore autophagic flux mainly through regulating the degradation of autophagosomes rather than suppressing the formation in vivo and in vitro. CONCLUSION: Our data indicated that AS-IV protects from PM2.5-induced lung injury in vivo and in vitro by inhibiting the PI3K/Akt/mTOR pathway to regulate autophagy and inflammation.