Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Neuroscience ; 503: 131-145, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36115515

RESUMEN

Adhesion G protein-coupled receptor A1 (ADGRA1) belongs to the G protein-coupled receptor (GPCR) family, and its physiological function remains largely unknown. We found that Adgra1 is highly and exclusively expressed in the brain, suggesting that Adgra1 may be involved in the regulation of neurological behaviors including anxiety, depression, learning and memory. To this end, we comprehensively analyzed the potential role of ADGRA1 in the neurobehaviors of mice by comparing Adgra1-/- and their wild-type (wt) littermates. We found that Adgra1-/- male but not female mice exhibited elevated anxiety levels in the open field, elevated plus maze, and light-dark box tests, with normal depression levels in the tail-suspension and forced-swim tests, and comparable learning and memory abilities in the Morris water maze, Y maze, fear condition, and step-down avoidance tests. Further studies showed that ADGRA1 deficiency resulted in higher dendritic branching complexity and spine density as evidenced by elevated expression levels of SYN and PSD95 in amygdalae of male mice. Finally, we found that PI3K/AKT/GSK-3ß and MEK/ERK in amygdalae of Adgra1-deficient male mice were aberrantly activated when compared to wt male mice. Together, our findings reveal an important suppressive role of ADGRA1 in anxiety control and synaptic function by regulating the PI3K/AKT/GSK-3ß and MEK/ERK pathways in amygdalae of male mice, implicating a potential, therapeutic application in novel anti-anxiety drug development.


Asunto(s)
Ansiolíticos , Fosfatidilinositol 3-Quinasas , Animales , Masculino , Ratones , Dendritas/metabolismo , Homólogo 4 de la Proteína Discs Large/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Sistema de Señalización de MAP Quinasas , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Neuronas/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
2.
Cell Death Dis ; 12(4): 362, 2021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33824276

RESUMEN

Adhesion G protein-coupled receptor A1 (ADGRA1, also known as GPR123) belongs to the G protein-coupled receptors (GPCRs) family and is well conserved in the vertebrate lineage. However, the structure of ADGRA1 is unique and its physiological function remains unknown. Previous studies have shown that Adgra1 is predominantly expressed in the central nervous system (CNS), indicating its important role in the transduction of neural signals. The aim of this study is to investigate the central function of Adgra1 in vivo and clarify its physiological significance by establishing an Adgra1-deficient mouse (Adgra1-/-) model. The results show that Adgra1-/- male mice exhibit decreased body weight with normal food intake and locomotion, shrinkage of body mass, increased lipolysis, and hypermetabolic activity. Meanwhile, mutant male mice present elevated core temperature coupled with resistance to hypothermia upon cold stimulus. Further studies show that tyrosine hydroxylase (TH) and ß3-adrenergic receptor (ß3-AR), indicators of sympathetic nerve excitability, are activated as well as their downstream molecules including uncoupling protein 1 (UCP1), coactivator 1 alpha (PGC1-α) in brown adipose tissue (BAT), and hormone-sensitive lipase (HSL) in white adipose tissue (WAT). In addition, mutant male mice have higher levels of serum T3, T4, accompanied by increased mRNAs of hypothalamus-pituitary-thyroid axis. Finally, Adgra1-/- male mice present abnormal activation of PI3K/AKT/GSK3ß and MEK/ERK pathways in hypothalamus. Overexpression of ADGRA1 in Neuro2A cell line appears to suppress these two signaling pathways. In contrast, Adgra1-/- female mice show comparable body weight along with normal metabolic process to their sex-matched controls. Collectively, ADGRA1 is a negative regulator of sympathetic nervous system (SNS) and hypothalamus-pituitary-thyroid axis by regulating PI3K/AKT/GSK3ß and MEK/ERK pathways in hypothalamus of male mice, suggesting an important role of ADGRA1 in maintaining metabolic homeostasis including energy expenditure and thermogenic balance.


Asunto(s)
Tejido Adiposo Blanco/metabolismo , Hipotálamo/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Termogénesis/fisiología , Tejido Adiposo Pardo/metabolismo , Animales , Metabolismo Energético/fisiología , Masculino , Ratones , Obesidad/metabolismo , Transducción de Señal/fisiología , Sistema Nervioso Simpático/metabolismo , Glándula Tiroides/metabolismo
3.
Cell Biol Int ; 30(5): 452-8, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16631391

RESUMEN

Goat embryonic stem (ES)-like cells could be isolated from primary materials-inner cell masses (ICMs) and remain undifferentiated for eight passages in a new culture system containing mouse ES cell conditioned medium (ESCCM) and on a feeder layer of mouse embryo fibroblasts (MEFs). However, when cultured in medium without mouse ESCCM, goat ES-like cells could not survive for more than three passages. In addition, no ES-like cells could be obtained when ICMs were cultured on goat embryo fibroblasts or the primary materials-whole goat blastocysts were cultured on MEFs. Goat ES-like cells isolated from ICMs had a normal karyotype and highly expressed alkaline phosphatase. Multiple differentiation potency of the ES-like cells was confirmed by differentiation into neural cells and fibroblast-like cells in vitro. These results suggest that mouse ES cells might secrete factors playing important roles in promoting goat ES-like cells' self-renewal, moreover, the feeder layers and primary materials could also influence the successful isolation of goat ES-like cells.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Cabras/embriología , Células Madre/metabolismo , Animales , Blastocisto/efectos de los fármacos , Técnicas de Cultivo de Célula , Diferenciación Celular , Células Cultivadas , Técnicas de Cocultivo/métodos , Medios de Cultivo Condicionados , Embrión de Mamíferos/citología , Ratones , Células Madre Multipotentes/citología , Células Madre Multipotentes/metabolismo , Células Madre/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...