Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros












Intervalo de año de publicación
1.
Phys Med Biol ; 69(11)2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38768601

RESUMEN

Objective.Multi-phase computed tomography (CT) has become a leading modality for identifying hepatic tumors. Nevertheless, the presence of misalignment in the images of different phases poses a challenge in accurately identifying and analyzing the patient's anatomy. Conventional registration methods typically concentrate on either intensity-based features or landmark-based features in isolation, so imposing limitations on the accuracy of the registration process.Method.We establish a nonrigid cycle-registration network that leverages semi-supervised learning techniques, wherein a point distance term based on Euclidean distance between registered landmark points is introduced into the loss function. Additionally, a cross-distillation strategy is proposed in network training to further improve registration performance which incorporates response-based knowledge concerning the distances between feature points.Results.We conducted experiments using multi-centered liver CT datasets to evaluate the performance of the proposed method. The results demonstrate that our method outperforms baseline methods in terms of target registration error. Additionally, Dice scores of the warped tumor masks were calculated. Our method consistently achieved the highest scores among all the comparing methods. Specifically, it achieved scores of 82.9% and 82.5% in the hepatocellular carcinoma and the intrahepatic cholangiocarcinoma dataset, respectively.Significance.The superior registration performance indicates its potential to serve as an important tool in hepatic tumor identification and analysis.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Neoplasias Hepáticas , Tomografía Computarizada por Rayos X , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Neoplasias Hepáticas/diagnóstico por imagen , Carcinoma Hepatocelular/diagnóstico por imagen , Aprendizaje Automático Supervisado
2.
J Colloid Interface Sci ; 664: 868-881, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38493652

RESUMEN

Conversion of CO2 into high value-added fuels through the photothermal effect is an effective approach for utilizing solar energy. In this study, we prepared the CN-based photocatalyst Py-CTN-Au with both donor-acceptor (D-A) system and dual photothermal effects using a simple two-step method involving calcination and photo-deposition. Real-time monitoring with a thermal imaging camera revealed that Py-CTN-Au0.5 achieved a maximum stable temperature of 180 °C, which was approximately 1.2 times higher than that of Py-CTN (155 °C) and 1.9 times higher than that of g-CN (95 °C) under the same reaction conditions. Under the optimized reaction conditions, Py-CTN-Au0.5 exhibited a CO release rate of 30.59 umol g-1 after 4 h of reaction, which was 7.3 times higher than that of pure g-CN (4.18 umol g-1). The D-A system not only facilitated the separation and transformation of charge carriers but also induced a photothermal effect to accelerate the photoreduction of CO2. Additionally, the cocatalyst Au nanoparticles (Au NPs) further enhanced the charge carrier dynamics and photothermal effect by increasing the built-in electric field intensity and localized surface plasmon resonance (LSPR) effect, respectively. The dual photothermal effects resulting from the non-radiative photon conversion of the D-A structure and the Au NPs LSPR effect, along with the enhanced charge carrier dynamics, catalyzed the efficient photoreduction of CO2. DFT simulations were used to confirm the effect of D-A system and Au NPs. In-situ FTIR results demonstrated that the synergistic photothermal effect promoted the formation of the key intermediate species COOH*, which is beneficial for the photocatalytic reduction of CO2. This study provides valuable insights into the multiple photothermal synergistic effects in photocatalytic reactions.

3.
Quant Imaging Med Surg ; 14(1): 160-178, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38223056

RESUMEN

Background: The 2-dimensional proximal isovelocity surface area (2D PISA) method underestimates tricuspid regurgitation (TR) severity. Previously proposed correction algorithms should be further scrutinized. Methods: Two correction algorithms were tested. One approach involves dividing the 2D PISA effective regurgitant orifice area by a constant of 0.7 (EROA0.7). Another approach involves multiplying the unadjusted EROA by Vorifice/(Vorifice - Valiasing), where Vorifice denotes the TR jet velocity, and Valiasing represents the color aliasing velocity (EROAVo-Va). In vitro validation was performed on a commercially available multifunctional valve tester with different size orifices and peak pressure gradients. A true EROA was derived through the regurgitant volume (RVol) calculated from the tester. For clinical validation, RVol was calculated as the difference between the overall stroke volume and the forward stroke volume of the right ventricle. Volumetric EROA was derived by dividing the RVol by the TR velocity-time integral (VTI). The vena contracta area (VCA) was obtained through direct planimetry with 3D echocardiography. The mean of volumetric EROA and VCA served as the reference in clinical validation. Results: Excellent correlation between the calculated EROAs and the true EROA was observed in vitro (r=0.98, r=0.97, and r=0.98 for uncorrected EROA, EROAVo-Va, and EROA0.7, respectively; all P values <0.0001). EROAVo-Va underestimated the true EROA and averaged 33% (P=0.3163), while EROA0.7 overestimated the true EROA and averaged 8% (P=0.0032). Clinically, these methods consistently exhibited a notable underestimation that varied with the reference EROA. This systematic underestimation was mitigated by both algorithms when either the VCA (biases of 19.6, 15.1, and 11.8 mm2 for uncorrected EROA, EROAVo-Va, and EROA0.7, respectively) or the volumetric EROA (biases of 10.1, 5.6, and 2.3 mm2 for uncorrected EROA, EROAVo-Va, and EROA0.7, respectively) served as the reference. Their ability to distinguish severe TR was similar, with area under the curve values of 0.905, 0.903, and 0.893 for uncorrected EROA, EROAVo-Va, and EROA0.7, respectively. No statistically significant differences were observed for diagnostic accuracy (all P values >0.05). Conclusions: Using a correction factor of 0.7 in quantifying TR provides similar accuracy when compared to other techniques. This represents a valuable clinical tool for quickly correcting the underestimation of the 2D PISA method in TR. This simple method may increase the frequency of applying the correction and earlier recognition of patients with severe TR.

4.
Chempluschem ; 89(4): e202300475, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37903722

RESUMEN

The nitrogen and sulfur co-doped graphene aerogel (SNGA) was synthesized by a one-pot hydrothermal route using graphene oxide as the starting material and thiourea as the S and N source. The obtained SNGA with a three-dimensionally hierarchical structure, providing more available pathways for the transport of lithium ions. The existing form of S and N was regulated by changing the calcination temperature and thiourea doping amount. The results revealed that high temperature could decompose -SOX- functional groups and promote the transformation of C-S-C to C-S, ensuring the cyclic stability of electrode materials, and increasing the thiourea dosage amount introduced more pyridine nitrogen, improving the multiplicative performance of electrode materials. Benefiting from the synergistic effect of sulfur and nitrogen atoms, the prepared SNGA showed superior rate capability (107.8 mAh g-1 at 5 A g-1), twice more than that of GA (52.8 mAh g-1), and excellent stability (232.1 mAh g-1 at 1 A g-1 after 300 cycles), 1.85 times more than that of GA (125.6 mAh g-1). The present study provides a detailed report on thiourea as a dopant to provide a sufficient basis for SNGA and a theoretical guide for further modifying.

5.
Artículo en Inglés | MEDLINE | ID: mdl-38082966

RESUMEN

Liver cancer is a part of the common causes of cancer death worldwide, and the accurate diagnosis of hepatic malignancy is important for effective next treatment. In this paper, we propose a convolutional neural network (CNN) based on a spatiotemporal excitation (STE) module for identification of hepatic malignancy in four-phase computed tomography (CT) images. To enhance the display detail of lesion, we expand single-channel CT images into three channels by using the channel expansion method. Our proposed STE module consists of a spatial excitation (SE) module and a temporal interaction (TI) module. The SE module calculates the temporal differences of CT slices at the feature level, which is used to excite shape-sensitive channels of the lesion features. The TI module shifts a portion of the channels in the temporal dimension to exchange information among the current CT slice and adjacent CT slices. Four-phase CT images of 398 patients diagnosed with hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC) are used for experiments and five cross-validations are performed. Our model achieved average accuracy of 85.00% and average AUC of 88.91% for classifying HCC and ICC.Clinical Relevance- The proposed deep learning-based model can perform HCC and ICC recognition tasks based on four-phase CT images, assisting doctors to obtain better diagnostic performance.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Neoplasias Hepáticas/diagnóstico por imagen , Carcinoma Hepatocelular/diagnóstico por imagen , Tomografía Computarizada por Rayos X , Redes Neurales de la Computación
6.
Artículo en Inglés | MEDLINE | ID: mdl-38083466

RESUMEN

Liver cancer has been one of the top causes of cancer-related death. For developing an accurate treatment strategy and raising the survival rate, the differentiation of liver cancers is essential. Multiphase CT recently acts as the primary examination method for clinical diagnosis. Deep learning techniques based on multiphase CT have been proposed to distinguish hepatic cancers. However, due to the recurrent mechanism, RNN-based approaches require expensive calculations whereas CNN-based models fail to explicitly establish temporal correlations among phases. In this paper, we proposed a phase difference network, termed as Phase Difference Network (PDN), to identify two liver cancer, hepatocellular carcinoma and intrahepatic cholangiocarcinoma, from four-phase CT. Specifically, the phase difference was used as interphase temporal information in a differential attention module, which enhanced the feature representation. Additionally, utilizing a multihead self-attention module, a transformer-based classification module was employed to explore the long-term context and capture the temporal relation between phases. Clinical datasets are used in experiments to compare the performance of the proposed strategy versus conventional approaches. The results indicate that the proposed method outperforms the traditional deep learning based methods.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Redes Neurales de la Computación , Neoplasias Hepáticas/diagnóstico por imagen , Carcinoma Hepatocelular/diagnóstico por imagen , Atención , Tomografía Computarizada por Rayos X/métodos
7.
Foods ; 12(24)2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38137237

RESUMEN

Vibrio parahaemolyticus is a halophilic and heat-labile gram-negative bacterium and is the most prevalent foodborne bacterium in seafood. In order to develop a rapid and sensitive method for detecting the foodborne pathogenic bacterium Vibrio parahaemolyticus, an aptamer-modified magnetic nanoparticle and an aptamer-modified upconversion nanoparticle were synthesised and used as a capture probe and a signal probe, respectively. The aptamer-modified magnetic nanoparticle, V. parahaemolyticus cell, and aptamer-modified upconversion nanoparticle formed a sandwich-like complex, which was rapidly separated from a complex matrix using a magnetic force, and the bacterial concentration was determined by fluorescence intensity analysis. The results showed that the fluorescence intensity signal correlated positively with the concentration of V. parahaemolyticus in the range of 3.2 × 102 to 3.2 × 105 CFU/mL, with a linear equation of y = 296.40x - 217.67 and a correlation coefficient of R2 = 0.9610. The detection limit of the developed method was 4.4 CFU/mL. There was no cross-reactivity with other tested foodborne pathogens. This method is highly specific and sensitive for the detection of V. parahaemolyticus, and can achieve the qualitative detection of this bacterium in a complex matrix.

8.
J Agric Food Chem ; 71(49): 19189-19206, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-37963243

RESUMEN

The production of saffron spice results in numerous byproducts, as only 15 g of spice can be produced from 1 kg of flowers, indicating that over 90% of the saffron flower material is eventually discarded as waste. In view of this, the paper reviews current knowledge on the natural active components in saffron byproducts and their biological activities, aiming to lay a theoretical and scientific foundation for the further utilization. Saffron byproducts contain a variety of phytochemical components, such as flavonoids, anthocyanins, carotenoids, phenolic acids, monoterpenoids, alkaloids, glycosides, and saponins. The activities of saffron byproducts and their mechanisms are also discussed in detail here.


Asunto(s)
Productos Biológicos , Crocus , Antocianinas , Extractos Vegetales/farmacología , Carotenoides , Antioxidantes , Flores , Colorantes
9.
Food Res Int ; 172: 113202, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37689949

RESUMEN

Milk-clotting enzyme (MCE) is a crucial active agent in cheese making. It is necessary to find traditional MCE substitutes due to the limited production of traditional MCE (e.g., calf rennet) and increased cheese consumption. Bacillus megaterium strain LY114 with good milk-clotting activity (MCA) (448 SU/mL) and a high MCA/proteolytic activity (PA) ratio (6.0) was isolated and identified from agricultural soil in Laiyang (Shandong, China) through 16S rRNA sequencing of 45 strains. The Bacillus megaterium LY114 MCE had a remarkable specific activity (7532 SU/mg) and displayed a 4.83-fold purification yield with 34.17% recovery through ammonium sulfate fractionation and DEAE-Sepharose Fast Flow. The purified LY114 MCE was a metalloprotease with a molecular weight of 30 kDa. LY114 MCE was stable at pH 5.0-7.0 and temperature <40 °C. The highest MCA appeared at a substrate pH of 5.5 with 30 mM CaCl2. The Michaelis constant (Km) and maximal velocity (Vm) for casein were 0.31 g/L and 14.16 µmol/min, respectively. LY114 MCE preferred to hydrolyze α-casein (α-CN) rather than ß-casein (ß-CN) and had unique α-CN, ß-CN and κ-casein (κ-CN) cleavage sites. LY114 MCE hydrolyzed casein to generate significantly different peptides compared with calf rennet and fungal MCE as determined by SDS-PAGE analysis. Chemical index analysis and sensory evaluation confirmed the usefulness of LY114 MCE in cheese making. LY114 MCE had the potential to be used in dairy processing and enriched traditional MCE substitutes.


Asunto(s)
Bacillus megaterium , Queso , Caseínas , ARN Ribosómico 16S/genética
10.
Quant Imaging Med Surg ; 13(8): 5089-5099, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37581071

RESUMEN

Background: Current guidelines recommend integrating several echocardiographic indices to evaluate the severity of tricuspid regurgitation (TR). Discordance of indices, including qualitative and quantitative methods, commonly exists in practice. The discordance among these parameters has not yet been fully elucidated. Methods: A total of 127 patients with recognizable TR jets without pulmonary regurgitation or intracardiac shunt were prospectively enrolled. We evaluated 8 parameters by 2-dimensional (2D) echocardiography: proximal iso-velocity surface area (PISA)-derived regurgitant volume (RVol), PISA-derived effective regurgitant orifice area (EROA), PISA radius, vena contracta width (VCW), color Doppler jet area, tricuspid valve annular diameter, inferior vena cava (IVC) diameter, and peak E wave. According to current guidelines, each echocardiographic parameter was determined to represent either severe or non-severe TR. A concordance score was calculated as the number of concordant parameters divided by 8, with a higher score reflecting better concordance. Data were further categorized into 3 subgroups: complete concordance (0 discordant parameters), high concordance (1-2 discordant parameters), and low concordance (3-4 discordant parameters). Results: The mean concordance score was 81%±17% for the entire cohort. There were 48 (38%) patients with complete concordance, including 6 patients with severe TR. In contrast, the low concordance group (n=43, 34%) mostly comprised severe TR patients (36 patients). When considering only EROA, RVol, and VCW, concordance improved, with 98 patients (77%) in complete agreement. Conclusions: Concordance seems limited when using echocardiographic parameters to assess TR severity. Applying only EROA, RVol, and VCW results in better concordance, as recommended by the current guidelines.

11.
J Dairy Sci ; 106(10): 6688-6700, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37558047

RESUMEN

Milk-clotting enzyme (MCE) is the essential active agents in dairy processing. The traditional MCE is mainly obtained from animal sources, in which calf rennet is the most widely used in cheese industry. Traditional MCE substitute is becoming necessary due to its limited production and increased cheese consumption. A novel traditional MCE substitute was produced from Bacillus velezensis DB219 in this study. The DB219 MCE exhibited a notable specific activity of 6,110 Soxhlet units/mg and 3.16-fold purification yield with 28.87% recovery through ammonium sulfate fractionation and DEAE-Sepharose Fast Flow. The purified DB219 MCE was a metalloprotease with a molecular weight of 36 kDa. The DB219 MCE was weak acid resistance and stable at pH 6.0 to 10.0 and temperature <45°C. The highest milk-clotting activity was observed in substrate at pH 5.5 added with 20 to 30 mM CaCl2. The Michaelis constant and maximal velocity for casein were 0.31 g/L and 14.22 µmol/min. The DB219 MCE preferred to hydrolyze ß-casein instead of α-casein. The DB219 MCE hydrolyzed α-casein, ß-casein, and κ-casein to generate significantly different peptides in comparison with calf rennet and ES6023 MCE (fungal MCE) through SDS-PAGE and reversed-phase HPLC analysis. The DB219 MCE mainly cleaved Thr124-Ile125 and Ser104-Phe105 bonds in κ-casein and had unique casein cleavage sites and peptide composition through LC-MS/MS analysis. The DB219 MCE was potential to be a new milk coagulant and enriched kinds of traditional MCE substitute.


Asunto(s)
Queso , Leche , Animales , Leche/química , Caseínas/química , Cromatografía Liquida/veterinaria , Espectrometría de Masas en Tándem/veterinaria , Metaloproteasas , Péptidos/análisis , Queso/análisis
12.
Chem Biodivers ; 20(4): e202300146, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36919922

RESUMEN

Febrifugine is a kind of quinazolinone compound with high biological activity from a Chinese herb called Chang Shan (Dichroa febrifuga). Febrifugine and its derivatives possess extensive biological activities, some of which exhibited anti-tumor activities as FAK inhibitors. However, they are not very effective at inhibiting tumor metastasis, perhaps because tumors gain energy through compensatory activation of other signaling pathways that promote cell migration and invasion. Therefore, seventeen novel febrifugine derivatives with quinazolinone skeleton were designed, synthesized and acted as potential FAK/PLK1 dual inhibitors. These compounds were determined by 1 H-NMR, 13 C-NMR and MS. Most of the compounds exhibited good inhibitory activity against cancer cell lines by computer-assisted screening, antitumor activity test and FAK/PLK1 inhibitory activity test, wherein compound 3b was screened as a high-efficiency lead compound.


Asunto(s)
Antineoplásicos , Inhibidores de Proteínas Quinasas , Quinazolinonas , Antineoplásicos/química , Línea Celular , Proliferación Celular , Diseño de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , Espectroscopía de Resonancia Magnética , Simulación del Acoplamiento Molecular , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Quinazolinonas/química , Quinazolinonas/farmacología , Esqueleto , Relación Estructura-Actividad , Quinasa 1 de Adhesión Focal/antagonistas & inhibidores , Quinasa Tipo Polo 1
13.
Food Funct ; 14(7): 3083-3091, 2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-36917481

RESUMEN

Patulin is one of the mycotoxins that exists in abundance in fruits and derivative products and is easily exposed in daily life, leading to various toxicities such as genotoxicity, teratogenicity, immunotoxicity, and carcinogenicity in the human body, while the efficient removal or degradation measures are still in urgent demand. In this work, Saccharomyces cerevisiae, a natural yeast with both patulin degradation and intestine damage protection abilities, was first applied to prevent and decrease the hazard after patulin intake. In vitro, Saccharomyces cerevisiae KD (S. cerevisiae KD) could efficiently degrade patulin at high concentrations. In a Canenorhabditis elegans (C. elegans) model fed on S. cerevisiae KD, locomotion, oxidative stress, patulin residual, intestine damage, and gene expression were investigated after exposure to 50 µg mL-1 patulin. The results demonstrated that S. cerevisiae KD could efficiently degrade patulin, as well as weaken the oxidative stress and intestinal damage caused by patulin. Moreover, S. cerevisiae KD could regulate the gene expression levels of daf-2 and daf-16 through the IGF-1 signaling pathway to control the ROS level and glutathione (GSH) content, thus decreasing intestinal damage. In summary, this work uncovers the outstanding characteristic of an edible probiotic S. cerevisiae KD in patulin degradation and biotoxicity alleviation and provides enlightenment toward solving the hazards caused by the accumulation of patulin.


Asunto(s)
Patulina , Animales , Humanos , Patulina/toxicidad , Saccharomyces cerevisiae/metabolismo , Caenorhabditis elegans/metabolismo , Estrés Oxidativo , Daño del ADN
14.
ACS Omega ; 7(49): 45096-45106, 2022 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-36530270

RESUMEN

Broccoli extract mainly contains polyphenols and glucosinolates (GSLs). GSLs can be hydrolyzed by gut microorganisms into isothiocyanates (ITCs) and other active substances. These substances have anticancer, anti-inflammatory, antimicrobial, and atherosclerosis-reducing functions. In this study, a high concentration (2000 µmol/L GSLs and 24 µmol/L polyphenols) and a low concentration (83 µmol/L GSLs and 1 µmol/L polyphenols) of broccoli extract were prepared. Gut microorganisms from fresh human feces were cultured to simulate the gut environment in vitro. The GSL content decreased and the types and content of ITCs increased with broccoli extract hydrolysis through cyclic condensation and gas chromatography-mass spectrometry (GC-MS) analyses. Broccoli extract significantly increased probiotics and inhibited harmful bacteria through 16S rDNA sequencing. Based on phylum level analysis, Firmicutes and Lachnospiraceae increased significantly (P < 0.05). At the genus level, both high- and low-concentration groups significantly inhibited Escherichia and increased Bilophila and Alistipes (P < 0.05). The high-concentration group significantly increased Bifidobacterium (P < 0.05). The broccoli extract improved the richness of gut microorganisms and regulated their structure. The GSL hydrolysis was significantly correlated with Bilophila, Lachnospiraceae, Alistipes, Bifidobacterium, Escherichia, and Streptococcus (P < 0.05). These study findings provide a theoretical foundation for further exploring a probiotic mechanism of broccoli extract in the intestine.

15.
AMB Express ; 12(1): 149, 2022 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-36435901

RESUMEN

The milk-clotting enzyme (MCE) is a crucial ingredient in cheese manufacture. Due to the limits of traditional MCE, finding viable substitute is a pressing issue. This study aims to isolate and identify a wild strain with high milk-clotting activity (MCA) and low proteolytic activity (PA) and optimize the fermentation conditions for MCE production. A strain of Bacillus velezensis DB219 with high MCA/PA value (9.2) was isolated from dairy soil (Wuchang, Heilongjiang, China) and identified through 16S rRNA from 40 strains. The optimal wheat bran, carbon, nitrogen, inoculum size, volume and initial pH were 60 g/L, soluble starch 12.5 g/L, corn steep liquor 3 g/L, 5%, 40 mL and 6.15, respectively for improving DB219 MCE production through single factor experiment. The wheat bran concentration, corn steep liquor concentration and volume were the most critical factor and their changed range was determined through Plackett-Burman design and the steepest ascent/descent experiments. The response surface analysis experiment of three factors and three levels was conducted by Box-Behnken design. The theoretical optimal fermentation conditions for DB219 MCE were as follows: wheat bran concentration 60.14 g/L, soluble starch 12.5 g/L, corn steep liquor 3 g/L, inoculum size 5%, volume 40.08 mL and initial pH 6.15. DB219 MCE achieved the maximal MCA (3164.84 SU/mL) that was 101.9% of the predicted value (3104.49 SU/mL) and 4.3-fold higher than the control.

16.
Food Chem ; 395: 133651, 2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-35820274

RESUMEN

Brassica vegetables, especially broccoli, have health benefits such as anticancer activity, which are attributed to isothiocyanate (ITC), products of glucosinolate hydrolysis. This study aimed to explore the effect of cooking time and addition of exogenous myrosinase (MYR) from moringa seeds on the yield of ITCs. The results showed that raw broccoli produced a significantly high amount of ITCs, which decreased by almost 40% after microwaving the broccoli for 1 min. Introducing exogenous MYR by adding ground moringa seeds to cooked broccoli caused a notable increase in ITC of 38%. At pH 4.0-6.0, MYR showed optimal activity, and the thermal stability of MYR from moringa seeds was better than that from broccoli. The kinetic parameters indicated that MYR from moringa seeds had a higher affinity to sinigrin than that from broccoli seeds. This study was novel in reporting that adding ground moringa seeds to cooked broccoli enhanced ITC formation.


Asunto(s)
Brassica , Moringa , Culinaria , Suplementos Dietéticos , Glucosinolatos/análisis , Glicósido Hidrolasas , Isotiocianatos
17.
Chem Biodivers ; 19(6): e202200189, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35510593

RESUMEN

A series of novel quinazolinone hydrazide derivatives were designed and synthesized as EGFR inhibitors. The results indicated that most of the aimed compounds had potential anti-tumor cell proliferation and EGFR inhibitory activities. In the comprehensive analysis of all the tested compounds, the target compound 9c showed the best anti-tumor cell proliferation activity, (IC50 =1.31 µM for MCF-7, IC50 =1.89 µM for HepG2, IC50 =2.10 µM for SGC), and IC50 =0.59 µM for the EGFR inhibitory activity. Docking results showed that compound 9c could ideally insert the active site and interact with the critical amino acid residues (Val702, Lys721, Met769, Asp831) in the active site.


Asunto(s)
Antineoplásicos , Neoplasias , Antineoplásicos/química , Diseño de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , Receptores ErbB , Humanos , Hidrazinas/farmacología , Simulación del Acoplamiento Molecular , Estructura Molecular , Inhibidores de Proteínas Quinasas/química , Quinazolinonas/química , Relación Estructura-Actividad
18.
Indian J Microbiol ; 62(2): 273-279, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35462716

RESUMEN

Glucosinolate (GSL) is an important active substance in broccoli and can be hydrolyzed to isothiocyanates (ITCs) by endogenous myrosinase. The ITCs are well-known chemopreventive agents that have received significant attention across the nutrition and pharmaceutical industries due to their anticancer properties. Myrosinase activity decreases during the cooking of broccoli, thus it is essential to study the microbiota involved in GSL hydrolysis to maximize their health benefits. In this study, two strains (Enterococcus gallinarum HG001 and Escherichia coli HG002) isolated from the gut microbiota of C57BL/6 mice were identified through 16 S rRNA gene sequence and characteristic analyses. The maximum GSL hydrolysis activity of 12 strains was observed using the cyclocondensation method. Their growth curves, GSL-hydrolysis curves, ITC generation curves and GSL-hydrolysis products were analyzed. The En. gallisepticum HG001 hydrolyzed GSL to a greater level than the E. coli HG002. It was observed that they could hydrolyze GSL to produce erucin nitrile and 4-methylsulfanylbutyro nitrile through gas chromatography-mass spectrometer analysis. Supplementary Information: The online version contains supplementary material available at 10.1007/s12088-022-01006-z.

19.
Food Sci Nutr ; 9(12): 6480-6491, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34925779

RESUMEN

Cyanidin-3-O-glucoside (C3G) is a kind of water-soluble pigment widely existing in many plants. It has strong antioxidant and anti-inflammatory activities. However, C3G cannot exist stably for a long time because of the phenolic hydroxyl groups in its structure. Liposome technology could improve the stability and bioavailability of compounds. Based on our previous studies, C3G liposomes prepared by ethanol injection method have a certain stability in two weeks of storage. In this study, THP-1 macrophages treated with C3G and C3G liposomes can reduce the levels of inflammatory-related factors, such as tumor necrosis factor-a (TNF-a), interleukin (IL)-1ß, IL-6, and IL-8, stimulated by lipopolysaccharide (LPS). Further studies showed that the LPS induction could increase the level of phosphorylated nuclear transcription factor NF-κB and phosphorylated IkBa, while C3G and C3G liposomes could inhibit the expression of phosphorylated proteins. Moreover, C3G and C3G liposomes could protect macrophages from apoptosis. In conclusion, C3G prepared by liposome technology exhibits anti-inflammatory activity, which provides a theoretical basis for the food industry to study functional food.

20.
Food Res Int ; 149: 110704, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34600696

RESUMEN

Milk coagulation is an important step in cheese production, and milk-clotting enzymes (MCEs) play a major role in this process. Calf rennet is the most widely used MCE in the cheese industry. The use of calf rennet substitutes is becoming necessary due to the limited availability of calf rennet and the increase in cheese consumption. The objective of this review is to summarize the latest findings on calf rennet substitutes (animal MCEs, plant-derived MCEs, recombinant MCEs and microbial MCEs) and their application in cheese production. Special emphasis has been placed on aspects of the effects of these substitutes on hydrolysis, functional peptides, cheese variety and cheese yield. The advantages and disadvantages of different calf rennet substitutes are discussed, in which microbial MCEs have the advantages of less expensive production, greater biochemical diversity, easier genetic modification, etc. In particular, some of these MCEs have suitable characteristics for cheese production and are considered to be the most potential calf rennet substitutes. Moreover, challenges and future perspectives are presented to provide inspiration for the development of excellent calf rennet substitutes.


Asunto(s)
Queso , Animales , Quimosina , Hidrólisis , Leche
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...