Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 934: 173293, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38759925

RESUMEN

Anthropogenic activities and natural erosion caused abundant influx of heavy metals (HMs) and organic matter (OM) into estuaries characterized by the dynamic environments governed by tidal action and river flow. Similarities and differences in the fate of HM and OM as well as the influences of OM on HMs remain incomplete in estuaries with seasonal human activity and hydrodynamic force. To address this gap, dissolved HMs (dHMs) and fluorescence dissolved OM (FDOM) were investigated in the Pearl River Estuary, a highly seasonally anthropogenic and dynamic estuary. It aimed to elucidate the effects of hydrodynamic conditions and DOM on the seasonal fate of dHMs via the multivariate statistical methods. Our findings indicated dHMs and FDOM exhibited consistently higher levels in the upper estuarine and coastal waters in both seasons, predominantly controlled by the terrestrial/anthropogenic discharge. In the wet season, dHMs and humic-like substances (HULIS) were positively correlated, showing that dHMs readily combined with HULIS. This association led to a synchronous decrease offshore along the axis of the estuary and the transport following the river plume in the surface affected by the salt wedge. Contrarily, dHMs were prone to complex with protein-like components impacted by the hydrodynamics during the dry season. Principal component analysis (PCA) results revealed the terrestrial/anthropogenic inputs and the fresh-seawater mixing process were the most crucial factors responsible for the fate of dHM in wet and dry seasons, respectively, with DOM identified as a secondary but significant influencing factor in both seasons. This study holds significance in providing valuable insights into the migration, transformation, the ultimate fate of dHMs in anthropogenically influenced estuaries, as well as the intricate dynamics governing coastal ecosystems.

2.
J Colloid Interface Sci ; 664: 107-116, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38460376

RESUMEN

Semiconductor photocatalysis was considered as an ideal solution to energy shortages. Herein, a novel ternary In2O3/In2S3-CdIn2S4 (IOSC) nanotube (NTs) photocatalyst was successfully constructed via in situ growth of In2S3 and CdIn2S4 nanosheets onto In2O3 skeleton. It was used for the efficient and stable photo-production of hydrogen from water splitting. The rationally designed IOSC NTs displayed significantly enhanced photocatalytic H2 production under visible light irradiation (≥420 nm), with the highest H2 yield determined to be 2892 µmol·g-1, which is much higher than that of pristine In2S3 and In2O3/In2S3 (IOS) NTs. Cyclic testing has shown that the IOSC2 product remains stable after four cycles of repeated use. The enhanced photocatalytic activity was contributed by its tightly bound tube-nanosheets heterogeneous structure and superior light absorption. Photoelectrons transfer in IOSC2 follows a Z-scheme mechanism, which greatly facilitates its utilization of photogenerated electrons and prevents CdIn2S4 from undergoing photo-corrosion affecting material stability. This work demonstrates the key role of in situ growth in the interface design of ternary heterostructures.

4.
Sci Total Environ ; 917: 170489, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38301785

RESUMEN

Estuaries receive substantial amounts of terrestrial dissolved organic nitrogen (tDON), which will be transported from the freshwater to the oceanic terminus through vigorous exchange processes. However, the intricate migration and transformation dynamics of tDON during this transportation, particularly at a molecular level, remain constrained. To address this knowledge gap, Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) was used for the analysis of DON molecular composition in the Pearl River Estuary (PRE), a river-dominated estuarine system influenced by intensified anthropogenic activities in southern China. The results showed a pronounced spatial-temporal variation in DON concentration in the study area. At the molecular level, tDON exhibited reduced unsaturation and aromaticity, coupled with an elevated abundance of DON compounds containing one­nitrogen atom (1 N-DON, 53.17 %) and compounds containing carbon, hydrogen, oxygen, nitrogen, and sulfur (CHONS) (27.46 %). It was evident that lignin was depleted while more oxygenated tannin compounds were generated in the freshwater-seawater mixing zone. This transformation is attributed to heightened biological activities, likely influenced by the priming effect of terrestrial nutrient inputs. In summer, the prevailing plume combined with biological activities in the strong mixing area and outer estuary increased the abundance of 3 N-DON molecules and a concurrent rise in the abundance of DON compounds containing only carbon, hydrogen, oxygen, and nitrogen (CHON), DON compounds containing carbon, hydrogen, oxygen, nitrogen, sulfur, and phosphorus (CHONSP), and CHONS. This trend also underscores the expanding role of marine plankton and microbes in the utilization of DON compounds containing carbon, hydrogen, oxygen, nitrogen, and phosphorus (CHONP). These findings provide details of tDON transformation processes at the molecular level in a river-dominated estuary and underline the estuarine hydrodynamics involved in transporting and altering DON within the estuary.


Asunto(s)
Materia Orgánica Disuelta , Hidrodinámica , Nitrógeno/análisis , Ríos , Estuarios , Carbono/análisis , Oxígeno/análisis , Azufre/análisis , Hidrógeno/análisis , Fósforo/análisis
5.
Ecotoxicol Environ Saf ; 270: 115917, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38171104

RESUMEN

Seagrass beds are susceptible to deterioration and heavy metals represent a crucial impact factor. The accumulation of heavy metal in two tropical seagrass species were studied in South China in this study and multiple methods were used to identify the heavy metal sources. E. acoroides (Enhalus acoroides) and T. hemperichii (Thalassia hemperichii) belong to the genus of Enhalus and Thalassia in the Hydrocharitaceae family, respectively. Heavy metal concentrations in the two seagrasses followed the order of Cr > Zn > Cu > Ni > As > Pb > Co > Cd based on the whole plant, and their bioconcentration factors were 31.8 ± 29.3 (Cr), 5.7 ± 1.3 (Zn), 7.0 ± 3.8 (Cu), 3.0 ± 1.9 (Ni), 1.2 ± 0.3 (As), 1.7 ± 0.9 (Pb), 9.1 ± 11.1 (Co) and 2.8 ± 0.6 (Cd), indicating the intense enrichment in Co and Cr within the two seagrasses. The two seagrasses were prone to accumulate all the listed heavy metals (except for As in E. acoroides), especially Co (BCFs of 1124) and Cr (BCFs of 2689) in the aboveground parts, and the belowground parts of both seagrasses also accumulated most metals (BCFs of 27) excluding Co and Pb. The Pb isotopic ratios (mean 208Pb/204Pb, 207Pb/204Pb and 206Pb/204Pb values of 38.2054, 15.5000 and 18.3240, respectively) and Cd isotopic compositions (δ114/110Cd values ranging from -0.09‰ to 0.58‰) within seagrasses indicated the anthropogenic sources of Pb and Cd including coal combustion, traffic emissions and agricultural activities. This study described the absorption characteristics of E. acoroides and T. hemperichii to some heavy metals, and further demonstrated the successful utilization of Pb and Cd isotopes as discerning markers to trace anthropogenic origins of heavy metals (mainly Pb and Cd) in seagrasses. Pb and Cd isotopes can mutually verify and be helpful to understand more information in pollution sources and improve the reliability of conclusion deduced from concentrations or a single isotope.


Asunto(s)
Hydrocharitaceae , Metales Pesados , Cadmio , Plomo , Monitoreo del Ambiente/métodos , Reproducibilidad de los Resultados , Metales Pesados/análisis , China , Isótopos , Medición de Riesgo
6.
Mar Pollut Bull ; 199: 115940, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38150979

RESUMEN

In the recent study, we investigated the seasonal variations in root exudation and microbial community structure in the rhizosphere of seagrass Enhalus acoroides in the South China Sea. We found that the quantity and quality of root exudates varied seasonally, with higher exudation rates and more bioavailable dissolved organic matter (DOM) during the seedling and vegetative stages in spring and summer. Using Illumina NovaSeq sequencing, we analyzed bacterial and fungal communities and discovered that microbial diversity and composition were influenced by root exudate characteristics s and seagrass biomass, which were strongly dependent on seagrass growth stages. Certain bacterial groups, such as Ruegeria, Sulfurovum, Photobacterium, and Ralstonia were closely associated with root exudation and may contribute to sulfur cycling, nitrogen fixation, and carbon remineralization, which were important for plant early development. Similarly, specific fungal taxa, including Astraeus, Alternaria, Rocella, and Tomentella, were enriched in spring and summer and showed growth-promoting abilities. Overall, our study suggests that seagrass secretes different compounds in its exudates at various developmental stages, shaping the rhizosphere microbial assemblages.


Asunto(s)
Microbiota , Carbono , Rizosfera , Biomasa , Crecimiento y Desarrollo , Raíces de Plantas/microbiología , Microbiología del Suelo
8.
Water Res ; 247: 120809, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37922637

RESUMEN

Excessive anthropogenic nitrogen inputs lead to the accumulation of nitrogen, and significantly impact the nitrogen transformation processes in estuaries. However, the governing of nitrogen during its transport from terrestrial to estuary under the influence of diverse human activities and hydrodynamic environments, particularly in the fresh-seawater mixing zone, remains insufficient researched and lack of basis. To address this gap, we employed multi-isotopes, including δ15N-NO3-, δ18O-NO3-, δ15N-NH4+, and δ15N-PN, as well as microbial function analysis, to investigate the nitrogen transformation processes in the Pearl River Estuary (PRE), a highly anthropogenic and terrestrial estuary. Principle component analysis (PCA) confirmed that the PRE could clearly partitioned into three zone, e.g., terrestrial area (T zone), mixing area (M zone) and seawater area (S zone), in terms of nitrogen transportation and transformation processes. The δ15N-NO3- (3.38±0.60‰) and δ18O-NO3- (6.35±2.45‰) results in the inner estuary (T area) indicate that NO3-attributed to the domestic sewage and groundwater discharge in the river outlets lead to a higher nitrification rate in the outlets of the Pearl River than in the reaching and seawater intrusion areas, although nitrate is rapidly diluted by seawater after entering the estuary. The transformation of nitrogen in the T zone was under significant nitrogen fixation (0.61 ± 0.22 %) and nitrification processes (0.0043 ± 0.0032 %) (presumably driven by Exiguobacterium sp. (14.1 %) and Cyanobium_PCC-6307 (8.1 %)). In contrast, relatively low δ15N-NO3- (6.83 ± 1.24‰) and high δ18O-NO3- (22.13±6.01‰) imply that atmospheric deposition has increased its contribution to seawater nitrate and denitrification (0.53±0.13 %) was enhanced by phytoplankton/bacterial (such as Psychrobacter sp. and Rhodococcus) in the S zone. The assimilation of NH4 results from the ammonification of NO3- reduces δ15N-NH4+ (5.36 ± 1.49‰) and is then absorbed by particulate nitrogen (PN). The retention of nitrogen when fresh-seawater mixing enhances the elevation of δ15N-NH4+ (8.19 ± 2.19‰) and assimilation of NH4+, leading to an increase in PN and δ15N-PN (6.91 ± 1.52‰) from biological biomass (mainly Psychrobacter sp. and Rhodococcus). The results of this research demonstrate a clear and comprehensive characterization of the nitrogen transformation process in an anthropogenic dominated estuary, highlighting its importance for regulating the nitrogen dissipation in the fresh-seawater mixing process in estuarine ecosystems.


Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua , Humanos , Nitrógeno/análisis , Isótopos de Nitrógeno/análisis , Estuarios , Nitratos/análisis , Ecosistema , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente/métodos , Agua de Mar , China
9.
Mar Environ Res ; 192: 106193, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37832281

RESUMEN

In this study, we investigated the taxonomic composition of the bacteria and phytoplankton communities in the Pearl River Estuary (PRE) through Illumina sequencing of the V3-V4 region of the 16 S rRNA gene. Furthermore, their relationships as well as recorded environmental variables were explored by co-occurrence networks. Bacterial community composition was different in two size fractions, as well as along the salinity gradient across two seasons. Free-living (FL) communities were dominated by pico-sized Cyanobacteria (Synechococcus CC9902) while Exiguobacterium, Halomonas and Pseudomonas were predominantly associated with particle-associated (PA) lifestyle, and Cyanobium PCC-6307 exhibited seasonal shifts in lifestyles in different seasons. In wet season, bacterial community composition was characterized by abundance of Cyanobacteria, Actinobacteria, and Bacteroidetes, which were tightly linked with high riverine inflow. While in dry season, Proteobacteria increased in prevalence, especially for Psychrobacter, NOR5/OM60 clade and Pseudomonas, which were thrived in lower water temperature and higher salinity. Moreover, we discovered that differences between PA and FL composition were more significant in the wet season than in the dry season, which may be due to better nutritional conditions of particles (indicated by POC%) in the wet season and then attract more diverse PA populations. Based on the analysis of plastidial 16 S rRNA genes, abundant small-sized mixotrophic phytoplankton (Dinophyceae, Euglenida and Haptophyta) were identified in the PRE. The complexity of co-occurrence network increased from FL to PA fractions in both seasons, which suggested that suspended particles can provide ecological niches for particle-associated colonizers contributing to the maintenance of a more stable community structure. In addition, the majority of phytoplankton species exhibited positive co-occurrences with both other phytoplankton species and bacterial counterparts, indicating the mutual cooperation between phytoplankton assemblages and specific bacterial populations e likely benefited from phytoplankton-derived organic compounds. This study enhances our understanding of the seasonal and spatial dynamics of bacterial communities and their potential relationship with phytoplankton assembly in estuarine waters.


Asunto(s)
Cianobacterias , Fitoplancton , Estaciones del Año , Ríos/química , Estuarios
10.
Mar Environ Res ; 190: 106122, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37549560

RESUMEN

Herbivores strongly affect the ecological structure and functioning in seagrass bed ecosystems, but may exhibit density-dependent effects on primary producers and carbon sequestration. This study examined the effects of herbivorous snail (Cerithidea rhizophorarum) density on snail intraspecific competition and diet, dominant seagrass (Thalassia hemprichii) and epiphyte growth metrics, and sediment organic carbon (SOC). The growth rates of the herbivorous snail under low density (421 ind m-2) and mid density (842 ind m-2) were almost two times of those at extremely high density (1684 ind m-2), indicating strong intraspecific competition at high density. Herbivorous snails markedly reduced the epiphyte biomass on seagrass leaves. Additionally, the seagrass contribution to herbivorous snail as food source under high density was about 1.5 times of that under low density, while the epiphyte contribution under low density was 3 times of that under high density. A moderate density of herbivorous snails enhanced leaf length, carbon, nitrogen, total phenol and flavonoid contents of seagrasses, as well as surface SOC content and activities of polyphenol oxidase and ß-glucosidase. However, high density of herbivorous snails decreased leaf glucose, fructose, detritus carbon, and total phenols contents of seagrasses, as well as surface SOC content and activities of polyphenol oxidase and ß-glucosidase. Therefore, the effects of herbivorous snail on seagrass, epiphyte and SOC were density-dependent, and moderate density of herbivorous snail could be beneficial for seagrasses to increase productivity. This provided theoretical guidance for enhancing carbon sink in seagrass bed and its better conservation.


Asunto(s)
Celulasas , Ecosistema , Secuestro de Carbono , Sedimentos Geológicos/química , Herbivoria , Carbono , Catecol Oxidasa
11.
Sci Total Environ ; 903: 166565, 2023 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-37633380

RESUMEN

Seagrass meadows are declining at a global scale, threatening their capacity as blue carbon sinks. Restoration of seagrasses (via seagrass seeds or plant transplantation) may recover their carbon sequestration capacity. Previous studies have predominantly focused on sediment organic carbon (SOC), while variations in sediment carbon compositions remain poorly understood, limiting our comprehension of the influence of seagrass restoration on sediment carbon stability. Here, we researched the differences in surface (0-3 cm) sediment carbon compositions in response to tropical seagrass transplantation among species (Thalassia hemprichii and Enhalus acoroides); specifically, differences in labile, recalcitrant and refractory SOC, as well as sediment inorganic carbon (SIC) compositions variations under transplanted T. hemprichii and E. acoroides communities. It was found that seagrass transplantation enhanced suspended particle organic matter, and epiphyte and macroalgae input to surface sediment, which recovered the surface SOC concentration and stock rapidly to natural levels (increased ∼1.6-fold) within two years following transplantation. The elevated contribution of epiphyte and macroalgae significantly increased the surface labile sediment organic matter (SOM), but not the recalcitrant and refractory SOM composition after short-term transplantation. Meanwhile, surface SIC was significantly elevated, which might be mainly ascribed to allochthonous carbonate particle trapped under transplanted area with implications for carbon sequestration. The higher canopy and longer leaf seagrass species, E. acoroides, had elevated SOC, SIC and was more labile composition, compared to T. hemprichii transplant. Overall, this research suggests that tropical seagrass transplantation can increase the surface SOC, SIC concentration by increasing the labile organic matter and allochthonous carbonate particle input, respectively, with varying significantly among seagrass species.

12.
Mar Environ Res ; 186: 105943, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36907080

RESUMEN

The mixing processes of fresh-salt water in estuarine and coastal regions have a substantial impact on the characteristics of heavy metals. A study was conducted in the Pearl River Estuary (PRE), located in South China, to examine the distribution and partitioning of heavy metals and the factors that influence their presence. Results showed that the hydrodynamic force, caused by the landward intrusion of the salt wedge, was the major contributor to the aggregation of heavy metals in the northern and western PRE. Conversely, metals were diffused seaward at lower concentrations along the plume flow in surface water. The study found that some metals, including Fe, Mn, Zn and Pb, were significantly higher in surface water than in bottom water in eastern waters, but the reverse was true in the southern offshore area, where limited mixing hindered the vertical transfer of metals in the water column. The partitioning coefficients (KD) of metals varied, with Fe exhibiting the highest KD (1038 ± 1093 L/g), followed by Zn (579 ± 482 L/g) and Mn (216 ± 224). The highest KD values of metals in surface water were observed in the west coast, while the highest KD in bottom water was found in eastern areas. Furthermore, re-suspension of sediment and the mixing of seawater and freshwater offshore, caused by seawater intrusion, resulted in the partitioning of Cu, Ni and Zn towards particulate phases in offshore waters. This study provides valuable insights into the migration and transformation of heavy metals in dynamic estuaries influenced by the interaction of freshwater and saltwater and highlights the importance of continued research in this field.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Estuarios , Agua , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente/métodos , Metales Pesados/análisis , Ríos , China , Sedimentos Geológicos
13.
Mar Environ Res ; 182: 105785, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36308799

RESUMEN

Seagrass-herbivore interactions play a principal role in regulating the structure and function of coastal food webs, which were affected by nutrient enrichment. Seawater nutrient enrichment might change seagrass palatability by altering seagrass physical and chemical traits, consequently modulating herbivory patterns, but this remains elusive. In this study, the dominant tropical seagrass Thalassia hemprichii was cultured in different ammonium concentrations to examine the response of seagrass nutritional quality, deterrent secondary metabolites, and leaf toughness, as well as the subsequent effect of the changed physical (e.g., leaf toughness) and chemical traits (e.g., nitrogen content; total phenol) on the grazing activity of the herbivorous snail Cerithidea rhizophorarum. Ammonium enrichment enhanced seagrass nutritional quality and decreased physical defence. Low ammonium enrichment increased total phenol content, while high ammonium enrichment reduced it. Both low and high ammonium enrichment enhanced the grazing intensity of C. rhizophorarum on seagrass. Interestingly, nutritional quality mostly determined the herbivory preference of C. rhizophorarum on the intact seagrass having physical structure, with a chemical deterrent (total phenol) playing a secondary role. In contrast, chemical deterrent mainly determined the grazing intensity on agar seagrass food which was made artificially to exclude physical structure. This indicated that seagrass leaf physical structure might hinder phenol compounds from deterring herbivores. Overall, the results presented here demonstrate that ammonium enrichment remarkably increased seagrass palatability and subsequently induced higher susceptibility to herbivory, which might induce seagrass loss.


Asunto(s)
Alismatales , Herbivoria , Herbivoria/fisiología , Alismatales/fisiología , Cadena Alimentaria , Valor Nutritivo , Fenoles
14.
Mar Environ Res ; 179: 105703, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35853314

RESUMEN

Seagrass bed ecosystem is one of the most effective carbon capture and storage systems on earth. Seagrass roots are the key link of carbon flow between leaf-root-sediment, and the release of dissolved organic carbon (DOC) from seagrass roots through exudation and decomposition are vital sources to the sediment organic carbon (SOC) in the seagrass beds. Unfortunately, human-induced eutrophication may change the release process of DOC from seagrass roots, thereby affecting the sediment carbon storage capacity. However, little is known about the effect of nutrient enrichment on the release of DOC from seagrass roots, hindering the development of seagrass underground ecology. Therefore, we selected Thalassia hemprichii, the tropical dominant seagrass species, as the research object, and made a comparison of the release of DOC from roots through exudation and decomposition under different nitrate treatments. We found that under control, 10 µmol L-1, 20 µmol L-1 and 40 µmol L-1 nitrate treatments, soluble sugar of T. hemprichii roots were 71.37 ± 3.43 mg g-1, 67.03 ± 5.33 mg g-1, 49.14 ± 3.48 mg g-1, and 18.51 ± 2.09 mg g-1, respectively, while the corresponding root DOC exudation rates were 7.00 ± 0.97 mg g DW root-1 h-1, 5.11 ± 0.42 mg g DW root-1 h-1, 4.08 ± 0.23 mg g DW root-1 h-1, and 3.78 ± 0.74 mg g DW root-1 h-1, respectively. There was a significant positive correlation between root soluble sugar and DOC exudation rate. DOC concentration of sediment porewater and SOC content also decreased under nitrate enrichment (though not significantly), which were both significantly positively correlated with the rate of root exuded DOC. Meanwhile, nitrate enrichment also reduced the release rate of DOC from seagrass roots during initial decomposition, and the release flux of DOC from decomposition. Therefore, nutrient enrichment could decrease nonstructural carbohydrates of seagrass roots, reducing the rate of root exuded DOC, thereby lowered SOC, as well as the DOC release from seagrass root decomposition. In order to increase the release of DOC from seagrass roots and improve the carbon sequestration capacity of seagrass beds, effective measures should be taken to control the coastal nutrients input into seagrass beds.


Asunto(s)
Materia Orgánica Disuelta , Ecosistema , Carbono , Eutrofización , Humanos , Nitratos , Azúcares
15.
Biomed Mater ; 17(5)2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35835088

RESUMEN

Calvarial bone defect remains a clinical challenge due to the lack of efficient osteo-inductive agent. Herein, a novel calcium and phosphorus codoped carbon dot (Ca/P-CD) for bone regeneration was synthesized using phosphoethanolamine and calcium gluconate as precursors. The resultant Ca/P-CDs exhibited ultra-small size, stable excitation dependent emission spectra and favorable dispersibility in water. Moreover, Ca/P-CDs with good biocompatibility rapidly entered the cytoplasm through endocytosis and increased the expression of bone differentiation genes. After mixing with temperature-sensitive hydrogel, Ca/P-CDs were injectedin situinto calvarial defect and promoted the repair of bone injury. These Ca/P-CDs provide a new treatment method for the bone repair and should be expended the application in the biomedical fields.


Asunto(s)
Carbono , Puntos Cuánticos , Regeneración Ósea , Calcio , Osteogénesis , Fósforo
16.
BMC Plant Biol ; 22(1): 296, 2022 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-35710355

RESUMEN

BACKGROUND: Sediment is crucial for the unique marine angiosperm seagrass growth and successful restoration. Sediment modification induced by eutrophication also exacerbates seagrass decline and reduces plantation and transplantation survival rates. However, we lack information regarding the influence of sediment on seagrass photosynthesis and the metabolics, especially regarding the key secondary metabolic flavone. Meanwhile, sulfation of flavonoids in seagrass may mitigate sulfide intrusion, but limited evidence is available. RESULTS: We cultured the seagrass Thalassia hemprichii under controlled laboratory conditions in three sediment types by combining different ratios of in-situ eutrophic sediment and coarse beach sand. We examined the effects of beach sand mixed with natural eutrophic sediments on seagrass using photobiology, metabolomics and isotope labelling approaches. Seagrasses grown in eutrophic sediments mixed with beach sand exhibited significantly higher photosynthetic activity, with a larger relative maximum electron transport rate and minimum saturating irradiance. Simultaneously, considerably greater belowground amino acid and flavonoid concentrations were observed to counteract anoxic stress in eutrophic sediments without mixed beach sand. This led to more positive belowground stable sulfur isotope ratios in eutrophic sediments with a lower Eh. CONCLUSIONS: These results indicated that coarse beach sand indirectly enhanced photosynthesis in T. hemprichii by reducing sulfide intrusion with lower amino acid and flavonoid concentrations. This could explain why T. hemprichii often grows better on coarse sand substrates. Therefore, it is imperative to consider adding beach sand to sediments to improve the environmental conditions for seagrass and restore seagrass in eutrophic ecosystems.


Asunto(s)
Hydrocharitaceae , Aminoácidos/metabolismo , Bahías , Suplementos Dietéticos , Ecosistema , Flavonoides/metabolismo , Hydrocharitaceae/metabolismo , Arena , Sulfuros/metabolismo
17.
J Nanobiotechnology ; 20(1): 297, 2022 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-35733214

RESUMEN

BACKGROUND: Phototherapy-triggered immunogenic cell death (ICD) rarely elicits a robust antitumour immune response, partially due to low antigen exposure and inefficient antigen presentation. To address these issues, we developed novel methylene blue-loaded ovalbumin/polypyrrole nanoparticles (MB@OVA/PPY NPs) via oxidative polymerization and π-π stacking interactions. RESULTS: The as-prepared MB@OVA/PPY NPs with outstanding photothermal conversion efficiency (38%) and photodynamic properties were readily internalized into the cytoplasm and accumulated in the lysosomes and mitochondria. Upon 808 nm and 660 nm laser irradiation, the MB@OVA/PPY NPs not only ablated tumour cells by inducing local hyperthermia but also damaged residual tumour cells by generating a large amount of reactive oxygen species (ROS), finally triggering the release of many damage-associated molecular patterns (DAMPs). Moreover, the MB@OVA/PPY NPs synergized with DAMPs to promote the maturation and improve the antigen presentation ability of DCs in vitro and in vivo. CONCLUSIONS: This work reported a PPY NPs-based nanoplatform to encapsulate the therepeutic proteins and absorb the functional molecules for combination therapy of tumours. The results demonstrated that the prepared MB@OVA/PPY NPs could be used as effective nanotherapeutic agents to eliminate solid tumours and trigger a powerful antitumour immune response.


Asunto(s)
Nanopartículas , Neoplasias , Humanos , Azul de Metileno/farmacología , Nanopartículas/uso terapéutico , Neoplasias/terapia , Ovalbúmina , Fototerapia/métodos , Polímeros/farmacología , Pirroles/farmacología
18.
Mar Pollut Bull ; 179: 113685, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35526378

RESUMEN

Nutrient and heavy metal concentrations in porewater/overlying water and their benthic fluxes were investigated to study their accumulation and transport at the sediment-water interface and the influences of sediment in the Pearl River Estuary, China. Results revealed that distribution of nutrients and metals reflected the effects of terrestrial inputs and some physicochemical processes. Benthic fluxes also suggested that nutrients and heavy metals Pb, Zn and Cd diffused from sediment to overlying water, but not for As, Co, Cr, Fe, Mn and Ni. Exchange capacities showed that 106-108 mol nutrients and 105-107 g Pb, Zn and Cd released from sediment to overlying water annually, indicating their potential ecological threat. However, 105-109 g metals As, Co, Cr, Fe, Mn and Ni were deposited annually, which may reduce the pollution pressure caused by anthropogenic activities. This study will provide references for the potential influence of benthic fluxes on estuarine environment globally.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Cadmio , China , Monitoreo del Ambiente , Estuarios , Sedimentos Geológicos , Plomo , Metales Pesados/análisis , Nutrientes , Ríos , Agua , Contaminantes Químicos del Agua/análisis
19.
Environ Res ; 212(Pt B): 113280, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35430277

RESUMEN

Coastal pollution, including nutrient loading, can negatively impact seagrass health and cover and may consequently alter soil organic carbon (SOC) accumulation and preservation. Key to understanding how eutrophication impacts SOC cycling in seagrass ecosystems is how nutrient loading changes the sources of carbon being deposited and how these changes in resources, both nutrients and carbon availability, influence soil microbiota community and activity. Currently, the direction and magnitude of nutrient loading impacts on seagrass SOC dynamics are poorly understood at a meadow scale, limiting our ability to reveal the driving mechanisms of SOC remineralisation. The purpose of this study was to assess the response of surface SOC and soil microbiomes to nutrient loading within tropical seagrass meadows. To achieve this, we quantified both total SOC and recalcitrant soil organic carbon (RSOC) concentrations and sources, in addition to the composition of bacterial and fungal communities and soil extracellular enzyme activities. We found that nutrient loading elevated SOC and RSOC content, mainly facilitated by enhanced algal growth. There was no nutrient effect on the soil prokaryotic communities, however, saprotrophic fungi groups (i.e. Trapeliales, Sordaridales, Saccharomycetales and Polyporales) and fungal activities were elevated under high nutrient conditions, including extracellular enzyme activities linked to seagrass-based cellulose and lignin decomposition. This relative increase in RSOC transformation may decrease the relative contribution of seagrass carbon to RSOC pools. Additionally, significantly different fungal communities were observed between adjacent T. hemprichii and E. acoroides areas, which coincided with elevated RSOC-decomposing enzyme activity in T. hemprichii meadows, even though the mixed seagrass meadow received allochthonous SOC and RSOC from the same sources. These results suggest that nutrient loading stimulated fungal activity and community shifts specific to the local seagrass species, thereby causing fine-scale (within-meadow) variability in SOC cycling in response to nutrient loading. This study provides evidence that fungal composition and activity, mediated by human activities (e.g. nutrient loading), can be an important influence on seagrass blue carbon accumulation and remineralisation.


Asunto(s)
Carbono , Microbiota , Ecosistema , Hongos , Sedimentos Geológicos , Humanos , Nutrientes , Suelo
20.
Biomater Sci ; 10(9): 2384-2393, 2022 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-35383811

RESUMEN

Curcumin as a hydrophobic polyphenol has great potential for tumor therapy, yet its rapid degradation and hydrophobicity severely impair its therapeutic effect in the clinic. Herein, we report a novel strategy for the formation of curcumin doped zeolitic imidazolate framework nanoparticles (Cur-ZIF NPs) by zinc ion driven simultaneous coordination of curcumin and 2-methylimidazole. The resultant Cur-ZIF NPs with a uniform nanosize exhibit favorable stability and dispersibility in water, as well as high drug-loading capacities. The pH and redox sensitivity of ZIF NPs enable the controlled release of curcumin in vivo. Moreover, Cur-ZIF NPs serve as nanocarriers that can load the toll-like-receptor-7 agonist (imiquimod, IQ) and be coated by homotypic cancer cell membranes to enhance tumor-targeted delivery. This study provides an attractive nanoplatform to effectively utilize curcumin and integrate multiple therapeutic modalities into a single system for tumor treatment.


Asunto(s)
Curcumina , Nanopartículas , Neoplasias , Zeolitas , Curcumina/química , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos , Humanos , Inmunoterapia , Nanopartículas/química , Neoplasias/tratamiento farmacológico , Zeolitas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA