RESUMEN
Knee osteoarthritis (KOA), a major health and economic problem facing older adults worldwide, is a degenerative joint disease. Glycyrrhiza uralensis Fisch. (GC) plays an integral role in many classic Chinese medicine prescriptions for treating knee osteoarthritis. Still, the role of GC in treating KOA is unclear. To explore the pharmacological mechanism of GC against KOA, UPLC-Q-TOF/MS was conducted to detect the main compounds in GC. The therapeutic effect of GC on DMM-induced osteoarthritic mice was assessed by histomorphology, µCT, behavioural tests, and immunohistochemical staining. Network pharmacology and molecular docking were used to predict the potential targets of GC against KOA. The predicted results were verified by immunohistochemical staining Animal experiments showed that GC had a protective effect on DMM-induced KOA, mainly in the improvement of movement disorders, subchondral bone sclerosis and cartilage damage. A variety of flavonoids and triterpenoids were detected in GC via UPLC-Q-TOF/MS, such as Naringenin. Seven core targets (JUN, MAPK3, MAPK1, AKT1, TP53, RELA and STAT3) and three main pathways (IL-17, NF-κB and TNF signalling pathways) were discovered through network pharmacology analysis that closely related to inflammatory response. Interestingly, molecular docking results showed that the active ingredient Naringenin had a good binding effect on anti-inflammatory-related proteins. In the verification experiment, after the intervention of GC, the expression levels of pp65 and F4/80 inflammatory indicators in the knee joint of KOA model mice were significantly downregulated. GC could improve the inflammatory environment in DMM-induced osteoarthritic mice thus alleviating the physiological structure and dysfunction of the knee joint. GC might play an important role in the treatment of knee osteoarthritis.
Asunto(s)
Glycyrrhiza uralensis , Simulación del Acoplamiento Molecular , Farmacología en Red , Osteoartritis de la Rodilla , Animales , Glycyrrhiza uralensis/química , Ratones , Osteoartritis de la Rodilla/tratamiento farmacológico , Osteoartritis de la Rodilla/metabolismo , Osteoartritis de la Rodilla/patología , Masculino , Modelos Animales de Enfermedad , Transducción de Señal/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Ratones Endogámicos C57BLRESUMEN
Background: Intervertebral disc degeneration (IDD) is a prevalent degenerative disease and often recognized as the primary cause of lower back pain (LBP). Aucubin (Au) is a natural compound with anti-inflammatory properties in various diseases. The present study aimed to confirm the therapeutic effect of Au on IDD and explore its potential mechanism in vivo and in vitro. Methods: The process of IDD was simulated using the lumbar spine instability (LSI) model. In vivo, the therapeutic effect of Au on LSI-induced mice was evaluated by micro-CT and histomorphometry. Additionally, immunohistochemistry was applied to detect the cartilage metabolism and inflammasome activation in endplate. In vitro, the cytotoxicity of Au on ATDC5 cells was detected by Cell Counting Kit-8 (CCK-8), and the biological effects of Au were evaluated by Quantitative Real-time PCR (qRT-PCR) and Western blotting. Results: Micro-CT analysis showed that Au administration significantly alleviated LSI-induced disc volume narrowing and endplate cartilage degeneration, which was further supported by Alcian Blue Hematoxylin/Orange G (ABH/OG) staining. Immunohistochemistry results verified that Au could increase the expression of Col2α1 and Aggrecan, reduce the expression of Mmp-13, and attenuate the degradation of the endplate extracellular matrix (ECM). Mechanistically, we found that Au treatment, both in vivo and in vitro, significantly inhibited NF-κB-NLRP3 inflammasome activation in chondrocytes as determined by the decreased expression of p-P65, NLRP3, and Caspase-1. Discussion: Taken together, our findings have demonstrated for the first time that Au treatment ameliorated the degeneration of cartilage endplates in IDD may by inhibiting NF-κB-NLRP3 inflammasome activation in chondrocytes and provided a potential candidate for the treatment of IDD.
RESUMEN
Raman-active modes of human skin and pork belly have been studied systematically by a near-infrared Raman spectrometer with an exciting laser of 1064 nm. The main components and quantitative determination of pork belly are extracted by fitting the Raman spectra with the normalized Raman spectra of biochemical reagents such as collagen, elastin, triolein, fibronectin, fibrin, and hyaluronic acid. It demonstrates that the main components and quantity are various at different locations of pork belly, while the main components of human skin are similar to those of pig skin. In a further step, the evolution of the heating time-dependent Raman modes of isolated pig skin has been investigated for the mechanism of burnt skin. One can find that the spatial structure and main components of skin have an excellent thermal stability in the temperature range from -120 to 200 ∘C, which is confirmed by the temperature dependent Raman spectra of isolated pig skin, microporous acellular dermal matrix (MADM) as well as their corresponding biochemical reagents (collagen, elastin, triolein, etc.). These results help understand the mechanism of the living skin burnt by fire or hot water, and supplies an alternative technology for surgeons to diagnose the depth of a burn injury in time.
RESUMEN
RATIONALE: A solitary fibrous tumor (SFT) is an uncommon soft tissue tumor that was first discovered in the pleura. Although SFTs have been documented in other extra-pleural sites, an SFT in the thyroid gland is highly unusual. An SFT of the thyroid gland can be difficult to diagnose, and there is little information about their Underlying biological behavior. PATIENT CONCERNS: We present a case of a 63-year-old man with a progressively growing left-neck mass detected 1 month ago, which was pathologically confirmed to be a benign SFT of the thyroid gland. DIAGNOSIS: Postoperative pathological examination of the tumor revealed an SFT. Immunopathological examination was consistent with the diagnosis of an SFT. INTERVENTIONS: The patient underwent surgical resection of the SFT. OUTCOMES: The patient was recurrence-free during 1.5 years of follow-up. LESSONS: Surgical excision is beneficial in SFTs that show no histological signs of malignancy, such as pleomorphism, enhanced mitotic activity, necrosis, bleeding, or capsular invasion. However, because the biologic activity remains unknown, meticulous long-term monitoring is required.
Asunto(s)
Hemangiopericitoma , Neoplasias de Tejido Fibroso , Síndrome de Trombocitopenia Febril Grave , Neoplasias de los Tejidos Blandos , Tumores Fibrosos Solitarios , Masculino , Humanos , Persona de Mediana Edad , Glándula Tiroides/cirugía , Tumores Fibrosos Solitarios/diagnóstico , Tumores Fibrosos Solitarios/cirugíaRESUMEN
Steroid-induced avascular necrosis of femoral head (SANFH) is a common disorder worldwide with high disability. Overdose of glucocorticoid (GC) is the most common non-traumatic cause of SANFH. Up until now, there are limited therapeutic strategies for curing SANFH, and the mechanisms underlying SANFH progression remain unclear. Nevertheless, Osteogenic dysfunction is considered to be one of the crucial pathobiological mechanisms in the development of SANFH, which involves mouse bone marrow mesenchymal stem cells (BMSCs) apoptosis and osteogenic differentiation disorder. Ursolic acid (UA), an important component of the Chinese medicine formula Yougui Yin, has a wide range of pharmacological properties such as anti-tumor, anti-inflammatory and bone remodeling. Due to the positive effect of Yougui Yin on bone remodeling, the purpose of this study was to investigate the effects of UA on dexamethasone (DEX)-induced SANFH in vitro and vivo. In vitro, we demonstrated that UA can promote mouse BMSCs proliferation and resist DEX-induced apoptosis by CCK8, Western blotting, TUNEL and so on. In addition, vitro experiments such as ALP and Alizarin red staining assay showed that UA had a beneficial effect on the osteogenic differentiation of mouse BMSCs. In vivo, the results of H&E staining, immunohistochemistry staining, Elisa and micro-CT analysis showed that UA had a bone repair-promoting effect in SANFH model. Moreover, the results of Western blot and TUNEL experiments showed that UA could delay the disease progression of SANFH in mice by inhibiting apoptosis. Overall, our study suggests that UA is a potential compound for the treatment of SANFH.
Asunto(s)
Necrosis de la Cabeza Femoral , Ratones , Animales , Necrosis de la Cabeza Femoral/inducido químicamente , Necrosis de la Cabeza Femoral/tratamiento farmacológico , Necrosis de la Cabeza Femoral/patología , Osteogénesis , Diferenciación Celular , Apoptosis , Esteroides , Ácido UrsólicoRESUMEN
Laryngocele is a rare clinical condition characterized by an abnormal dilation of the laryngeal saccule. The present study focused on two separate cases of diagnosed patients. The first patient suffered from internal laryngocele and complained of hoarseness for almost 1 year. Plasma was used to treat the internal laryngocele and the outcomes were satisfying. The patient did not undergo any tracheostomy due to previous endoscopic surgery. The second patient included in the present study was diagnosed with mixed laryngocele and complained of swelling on the left side of the upper aspect of the neck with considerable pain for >1 month. The patient was prepped for excision by an external transcervical technique under general anesthesia. None of the two patients had any recurrence or other changes during follow-up. The purpose of reporting these two cases of laryngocele was to increase awareness of this condition. Surgery is still the first-line treatment for diagnosed cases, but with the advent of new microscopic techniques, the use of plasma in an inter-pharynx setting has become more common. The results observed after using plasma to treat one internal laryngocele may be relevant to better understanding the application of this method and confirm that it may be a new suitable approach to treat this condition.
RESUMEN
Abstract Objective MicroRNA-29a-3p has been reported in a variety of cancers, but its role in hypopharyngeal cancer remains unclear. This study was to determine the role of microRNA-29a-3p in the occurrence and development of hypopharyngeal cancer. Methods 40 patients with hypopharyngeal cancer who underwent surgery in the Affiliated Hospital of Jining Medical University from April 2013 to November 2017 were selected for this study. The cancer tissue samples of the patients were collected, and the patients were followed up for three years. The expression of microRNA-29a-3p in tissue samples was detected by in situ hybridization with fluorescent probe, and the relationships among microRNA-29a-3p and clinicopathological factors, postoperative recurrent-metastasis, survival time were studied. Immunohistochemical was used to detect the expression of Ki67 and E-cadherin in tissue samples. Results Combined with HE staining results showed that microRNA-29a-3p expression was relatively high in non-cancer tissue cells (red blood cells and fibroblasts in tumor interstitial vessels), but was relatively low in cancer tissue and cells. According to the follow-up data of 40 patients with hypopharyngeal cancer, tumor size, T-stage, tumor differentiation, postoperative recurrent-metastasis of hypopharyngeal cancer patients were significantly negatively correlated with microRNA-29a-3p (p< 0.05). Immunohistochemica results further confirmed that microRNA-29a-3p was negatively correlated with the expression of Ki67 and E-cadherin. The survival time of patients positively related with microRNA-29a-3p expression (p< 0.05). Moreover, ROC curve analysis showed that the area under the curve of the combined detection of miRNA-29a-3p+Ki67+E-cadherin was larger than that of the single detection of the three indexes. Conclusions The expression of microRNA-29a-3p is closely related to the occurrence, development and prognosis of hypopharyngeal cancer, and it affects the proliferation and invasion. This indicates that microRNA-29a-3p serves as a therapeutic target for the occurrence and development of hypopharyngeal cancer. The evidence of study designs of this study is IV using "Oxford Centre for Evidence-Based Medicine 2011 Levels of Evidence".
RESUMEN
OBJECTIVE: MicroRNA-29a-3p has been reported in a variety of cancers, but its role in hypopharyngeal cancer remains unclear. This study was to determine the role of microRNA-29a-3p in the occurrence and development of hypopharyngeal cancer. METHODS: 40 patients with hypopharyngeal cancer who underwent surgery in the Affiliated Hospital of Jining Medical University from April 2013 to November 2017 were selected for this study. The cancer tissue samples of the patients were collected, and the patients were followed up for three years. The expression of microRNA-29a-3p in tissue samples was detected by in situ hybridization with fluorescent probe, and the relationships among microRNA-29a-3p and clinicopathological factors, postoperative recurrent-metastasis, survival time were studied. Immunohistochemical was used to detect the expression of Ki67 and E-cadherin in tissue samples. RESULTS: Combined with HE staining results showed that microRNA-29a-3p expression was relatively high in non-cancer tissue cells (red blood cells and fibroblasts in tumor interstitial vessels), but was relatively low in cancer tissue and cells. According to the follow-up data of 40 patients with hypopharyngeal cancer, tumor size, T-stage, tumor differentiation, postoperative recurrent-metastasis of hypopharyngeal cancer patients were significantly negatively correlated with microRNA-29a-3p (pâ¯<â¯0.05). Immunohistochemica results further confirmed that microRNA-29a-3p was negatively correlated with the expression of Ki67 and E-cadherin. The survival time of patients positively related with microRNA-29a-3p expression (pâ¯<â¯0.05). Moreover, ROC curve analysis showed that the area under the curve of the combined detection of miRNA-29a-3p+Ki67+E-cadherin was larger than that of the single detection of the three indexes. CONCLUSIONS: The expression of microRNA-29a-3p is closely related to the occurrence, development and prognosis of hypopharyngeal cancer, and it affects the proliferation and invasion. This indicates that microRNA-29a-3p serves as a therapeutic target for the occurrence and development of hypopharyngeal cancer. The evidence of study designs of this study is IV using "Oxford Centre for Evidence-Based Medicine 2011 Levels of Evidence".
Asunto(s)
Neoplasias Hipofaríngeas , MicroARNs , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias Hipofaríngeas/genética , Neoplasias Hipofaríngeas/cirugía , Relevancia Clínica , Antígeno Ki-67 , Cadherinas/genéticaRESUMEN
Introduction: Despite the protection and management of skin has been paid more and more attention, effective countermeasures are still lacking for patients suffering from UV or chemotherapy with damaged skin. Recently, gene therapy by small interfering RNA (siRNA) has emerged as a new therapeutic strategy for skin lesions. However, siRNA therapy has not been applied to skin therapy due to lack of effective delivery vector. Methods: Here, we develop a synthetic biology strategy that integrates the exosomes with artificial genetic circuits to reprogram the adipose mesenchymal stem cell to express and assemble siRNAs into exosomes and facilitate in vivo delivery siRNAs for therapy of mouse models of skin lesions. Results: Particularly, siRNA enriched exosomes (si-ADMSC-EXOs) could be directly taken up by the skin cells to inhibit the expression of skin injury related genes. When mice with skin lesions were smeared with si-ADMSC-EXOs, the repair of lesioned skin became faster and the expression of inflammatory cytokines were decreased. Discussion: Overall, this study establishes a feasible therapeutic strategy for skin injury, which may offer an alternative to conventional biological therapies requiring two or more independent compounds.
Asunto(s)
Exosomas , Células Madre Mesenquimatosas , Ratones , Animales , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , FN-kappa B/metabolismo , Exosomas/genética , Exosomas/metabolismo , Piel/lesiones , Células Madre Mesenquimatosas/metabolismoRESUMEN
Purpose: This study aims to investigate the associations of the systemic immune-inflammation index (SII) with bone mineral density (BMD) and osteoporosis in adult females from a nationally representative sample. Methods: A cross-sectional study was performed among 4092 females aged ≥20 years from the National Health and Nutrition Examination Survey 2007-2010. Linear and logistic regressions were applied to explore the relationships of SII with BMD and the risk of osteoporosis, respectively. Results: Linear regression analyses found that a doubling of SII levels was significantly correlated with a 1.39% (95% CI: 0.57%, 2.20%) decrease in total femur BMD, a 1.16% (95% CI: 0.31%, 2.00%) decrease in femur neck BMD, a 1.73% (95% CI: 0.78%, 2.66%) decrease in trochanter BMD, and a 1.35% (95% CI: 0.50%, 2.20%) decrease in intertrochanteric BMD among postmenopausal women, after adjusting for covariates. Logistic regression analyses showed that compared with postmenopausal women in the lowest SII quartile, those in the highest quartile had higher risks of osteoporosis in the total femur (odds ratio (OR) = 1.70, 95% CI: 1.04, 2.76), trochanter (OR = 1.86, 95% CI: 1.07, 3.38), intertrochanter (OR = 2.01, 95% CI: 1.05, 4.04) as well as overall osteoporosis (OR = 1.57, 95% CI: 1.04, 2.37). In contrast, there was no significant association between SII and BMD in premenopausal women. Conclusions: SII levels were negatively associated with BMD levels in postmenopausal women but not in premenopausal women. Elevated SII levels could be a potential risk factor for osteoporosis in postmenopausal women.
RESUMEN
RATIONALE: Multiple extramedullary plasmacytoma (EMP) of the head and neck is rare and a definitive first-line treatment has not been established. EMP successively as a benign mass occurring in multiple areas of the head and neck is rare. This report describes an atypical case with EMP occurring in multiple areas of the head and neck. PATIENT CONCERNS: A 35-year-old woman was admitted due to complaints of sore throat discomfort accompanied by hoarseness. The patient had undergone surgical excision of the thyroid gland and parotid gland excision several years ago. Postoperative pathological examination both indicated EMP. This time, the woman suffered EMP in head and neck who was treated with a simple surgery. DIAGNOSIS: Postoperative pathological examination of the tumor indicated EMP, and histopathological findings revealed the tumor to be a plasmacytoma. Immunopathological examination were consistent with the diagnosis of EMP. INTERVENTIONS: The patient underwent surgical resection without radiotherapy. OUTCOMES: Histopathological and immunopathological examination findings revealed the tumor to be EMP. The patient was recurrence-free and did not progress to multiple myeloma (MM) during 19 months follow-up. LESSONS: Increasing the awareness of EMP of head and neck is warranted. Our case confirmed that surgical excision is beneficial in the treatment of small, localized EMP.
Asunto(s)
Neoplasias , Humanos , AdultoRESUMEN
Methods: GEO, GEPIA, and UALCAN databases were used to assess LIMS2 expression in OS. UALCAN and CCLE databases were applied to assess the methylation levels of LIMS2 in OS tissues and cells, which was verified in OS cells using the methylation specific PCR. The effects of LIMS2 on regulating OS cell growth, migration and invasion were determined by CCK-8, Edu staining, and transwell chambers, respectively. The role of LIMS2 in the activation of MAPK signaling was assessed using western blotting assay in OS cells. Results: LIMS2 expression was declined in OS tissues and cells, while its methylation level was increased. The low expression of LIMS2 was associated with shorter overall survival and disease-free survival. Overexpression of LIMS2 inhibited cell growth, migration, and invasion and decreased the levels of p-ERK/ERK, p-P38/P38, and p-JNK/JNK. Conclusion: LIMS2 expression was decreased in OS, which was associated with hypermethylation level and poor prognosis. LIMS2 overexpression inhibited OS cell growth and migration, which may be caused by the suppression of MAPK signaling.
RESUMEN
Allergic rhinitis (AR) is a common disease that causes severe inflammation and even disabilities. Previous studies have reported baicalein to have an anti-inflammatory effect. However, the pharmacological action of baicalein on anaphylaxis has not been clarified yet. This study assessed the in vivo protective effect of baicalein post-treatment in an ameliorating ovalbumin (OVA)-sensitized AR rat model. Baicalein attenuated histological alterations, aberrant tissue repair and inflammation after OVA-induced AR. Baicalein reduced the frequency of nasal/ear rubs and sneezes in rats, and inhibited generation of several inflammatory cytokines (TNF-α, IL-1ß, and IL-6) in both blood and nasal lavage of rats. Infiltrations of eosinophils, lymphocyte, and neutrophils were decreased in baicalein-administered rats. Furthermore, baicalein inhibited the expression of STAT3 phosphorylation in the nasal mucosa. In summary, baicalein attenuated OVA-induced AR and inflammation, which suggests it as a promising therapeutic agent for the alleviation of AR-associated inflammation and pathology.
Asunto(s)
Flavanonas/farmacología , Inflamación/tratamiento farmacológico , Rinitis Alérgica/tratamiento farmacológico , Animales , Modelos Animales de Enfermedad , Eosinófilos/metabolismo , Inflamación/patología , Linfocitos/metabolismo , Masculino , Mucosa Nasal/efectos de los fármacos , Mucosa Nasal/metabolismo , Ovalbúmina , Ratas , Ratas Sprague-Dawley , Rinitis Alérgica/patologíaRESUMEN
The present study aimed to explore the potential of combined treatment with mesenchymal stem cells (MSCs) and danshen for angiogenesis and bone regeneration in a rabbit model of avascular necrosis of femoral head (ANFH). A rabbit model of ANFH was established using the Shwartzman reaction with methylprednisolone and Escherichia coli endotoxin injection. Magnetic resonance imaging (MRI) and histopathological examination were used to evaluate the rabbit model of ANFH. The rabbits were randomly divided into the danshen group, the MSCs group, the danshen combined with MSCs group and the model group (treated with physiological saline). The expression level of monocyte chemoattractant protein-1 (MCP-1) and stromal cell-derived factor-1 (SDF-1) were determined by reverse transcription polymerase chain reaction (RT-PCR). The expression level of bone morphogenetic protein-2 (BMP-2) and vascular endothelial growth factor (VEGF) were detected by immunofluorescence and the mRNA expression of BMP-2 and VEGF were detected by RT-PCR. Typical osteonecrosis occurred in the rabbit model of ANFH, which indicated that the model was successfully established. MCP-1 and SDF-1 were significantly increased in the model group compared with the normal group (P<0.05). Following the administration of MSCs and Salvia miltiorrhiza (danshen), MSCs labeled with 5-bromo-2-deoxyuridine were observed to be gathered in the necrotic area. The increased migration of MSCs to the necrotic area may be due to the upregulated expression of the chemokines MCP-1 and SDF-1. ANFH treated with danshen combined with MSCs may promote revascularization by increasing the expression of VEGF and BMP-2 in the femoral head, promoting re-ossification and revascularization. Danshen combined with the transplantation of MSCs may be regarded as a novel therapy for the treatment of ANFH in a clinical setting.
RESUMEN
BACKGROUND: Monopolar spindle 1 (Mps1/TTK) is an apical dual-specificity protein kinase in the spindle assembly checkpoint (SAC) that guarantees accurate segregation of chromosomes during mitosis. High levels of Mps1 are found in various types of human malignancies, such as glioblastoma, osteosarcoma, hepatocellular carcinoma, and breast cancer. Several potent inhibitors of Mps1 exist, and exhibit promising activity in many cell cultures and xenograft models. However, resistance due to point mutations in the kinase domain of Mps1 limits the therapeutic effects of these inhibitors. Understanding the detailed resistance mechanism induced by Mps1 point mutations is therefore vital for the development of novel inhibitors against malignancies. METHODS: In this study, conventional molecular dynamics (MD) simulation and Gaussian accelerated MD (GaMD) simulation were performed to elucidate the resistance mechanisms of Cpd-5, a potent Mps1 inhibitor, induced by the four representative mutations I531M, I598F, C604Y, S611R. RESULTS: Our results from conventional MD simulation combined with structural analysis and free energy calculation indicated that the four mutations weaken the binding affinity of Cpd-5 and the major variations in structural were the conformational changes of the P-loop, A-loop and αC-helix. Energetic differences of per-residue between the WT system and the mutant systems indicated the mutations may allosterically regulate the conformational ensemble and the major variations were residues of Ile-663 and Gln-683, which located in the key loops of catalytic loop and A-loop, respectively. The large conformational and energetic differences were further supported by the GaMD simulations. Overall, these obtained molecular mechanisms will aid rational design of novel Mps1 inhibitors to combat inhibitor resistance.
RESUMEN
The present study aimed to explore the function of microRNA (miR)-204 in modulating cyclin-dependent kinase inhibitor 1B (p27) mRNA stability in head and neck squamous cell carcinoma (HNSCC). Briefly, reverse transcription quantitative polymerase chain reaction and western blot analysis were used to detect miR-204 and Brd4 level. Cell viability, cell cycle and cell apoptosis were used to investigate the effects of miR-204. Additional luciferase reporter and mRNA stability assays were used to explore the mechanisms contributing to miR-204 effects. Here, miR-204 was downregulated in HNSCC tissues compared with the adjacent normal tissues. The expression levels of miR-204 and bromodomain-containing protein 4 (Brd4) were negatively associated in HNSCC tissues. Ectopic expression of miR-204 inhibited HNSCC cell proliferation, promoted cell cycle arrest at the G1/S phase and promoted cell apoptosis compared with control cells. Additionally, upregulation of miR-204 expression levels enhanced p27 mRNA stability. Notably, Brd4 was identified as a target of miR-204, and the co-expression of Brd4 with miR-204 mimics attenuated the inhibitory effects of miR-204 on cell proliferation and enhanced p27 mRNA stability compared with control cells. Thus, it was concluded that miR-204 functions as a tumor suppressor by enhancing p27 mRNA stability through targeting Brd4 in HNSCC.
RESUMEN
BACKGROUND/AIMS: Insulin-like growth factor binding proteins (IGFBP) play important roles in bone metabolism. IGFBP4 is involved in senescent-associated phenomena in mesenchymal stem cells (MSCs). The goal of the present study was to determine whether age-related IGFBP4 overexpression is associated with the impaired osteogenic differentiation potential of aged bone marrow derived MSCs. METHODS: MSCs were isolated from Sprague-Dawley rats aged 3-26 months. The bone morphogenetic protein (BMP)-2-induced osteogenic differentiation of rat MSCs was assessed by analyzing the expression levels of osteoblast marker genes [runt-related transcription factor 2 (RUNX2), alkaline phosphatase (ALP), and osteocalcin (OC)], ALP activity and calcification. RESULTS: Our study showed that IGFBP4 mRNA and protein expression increased with age in parallel with impaired osteogenic differentiation of MSCs cultured in BMP2-containing osteogenic medium, as evidenced by the downregulation of osteoblast marker genes, and decreased ALP activity and calcium deposits. IGFBP4 overexpression impaired BMP2-induced osteogenic differentiation potential of young MSCs, whereas IGFBP4 knockdown restored the osteogenic potency of aged MSCs. Moreover, IGFBP4 knockdown stimulated the activation of Erk and Smad by increasing phosphorylation. CONCLUSION: Collectively, our results demonstrate that IGFBP4 overexpression plays a role in the impairment of MSC differentiation potential via the Erk and Smad pathways, suggesting potential targets to improve MSC function for cell therapy applications.
Asunto(s)
Proteína Morfogenética Ósea 2/metabolismo , Diferenciación Celular/genética , Proteína 4 de Unión a Factor de Crecimiento Similar a la Insulina/biosíntesis , Células Madre Mesenquimatosas/metabolismo , Osteogénesis/genética , Animales , Células de la Médula Ósea/efectos de los fármacos , Células Cultivadas , Regulación del Desarrollo de la Expresión Génica , Proteína 4 de Unión a Factor de Crecimiento Similar a la Insulina/genética , Sistema de Señalización de MAP Quinasas/genética , Células Madre Mesenquimatosas/citología , Osteoblastos/metabolismo , Fosforilación , ARN Mensajero/biosíntesis , Ratas , Proteínas Smad/genéticaRESUMEN
Chondrosarcomas (CS) is the second most frequent tumors of cartilage origin. A small compound extracted from Thunder God Vine (Tripterygium wilfordii Hook. F.) called celastrol can directly bound CIP2A protein and effectively inhibit cell proliferation and induce apoptosis in several cancer cells. However, little knowledge is concern about the important role of CIP2A in CS patients and the therapeutic value of celastrol on CS. Our results showed that CIP2A and c-MYC were verified to be oncoproteins by detecting their mRNA and protein expression in 10 human CS tissues by qRT-PCR and Western blots. After treatment of celastrol, the proliferation, migration and invasion were significantly inhibited; whereas the apoptosis was largely induced in human CS cell lines. In addition, celastrol inhibited the expression of CIP2A, c-MYC, and suppressed apoptotic proteins BAX and caspase-8 in human CS cells, on the other hand, it induced the expression of antiapoptotic protein Bcl-2. Finally, knockdown of CIP2A also inhibited the migration and invasion and induced apoptosis of human CS cells. To sum up, we found that celastrol had effects on inhibiting proliferation, migration, invasion and inducing apoptosis through suppression CIP2A/c-MYC signaling pathway in vitro, which may provide a new therapeutic regimen for CS.
Asunto(s)
Autoantígenos/metabolismo , Condrosarcoma/tratamiento farmacológico , Proteínas de la Membrana/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Triterpenos/farmacología , Apoptosis , Autoantígenos/genética , Caspasa 8/genética , Caspasa 8/metabolismo , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular , Condrosarcoma/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular , Proteínas de la Membrana/genética , Invasividad Neoplásica , Triterpenos Pentacíclicos , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , ARN Mensajero/genética , ARN Interferente Pequeño , Transducción de Señal/efectos de los fármacos , Triterpenos/antagonistas & inhibidores , Triterpenos/química , Triterpenos/uso terapéutico , Proteína X Asociada a bcl-2/genética , Proteína X Asociada a bcl-2/metabolismoRESUMEN
BACKGROUND: Degeneration of intervertebral disks in the lower lumbar spine is associated with significant structural alterations. Finite element model has been widely used in the study of spinal mechanical behaviors. Our study used this technique to characterize the motional influence to the double-level (L4-5 and L5-S) degeneration. METHODS AND RESULTS: Three grades of disk degeneration were modeled with the changes in geometry and material properties. In the extension and flexion of range of motion (ROM), single segment degeneration in L4-5 or L5-S resulted in a decreased angle in itself and increased angle in the other segment. Double-level degeneration resulted in a decreased rotation in both segments. Bending resulted in a decreased ROM in all 3 grades of degeneration in the double-level degeneration. In torsion loading, mild and moderate single degeneration in L4-5 and L5-S increased the rotation angle. In double-level degeneration, mild and moderate L4-5 degeneration increased the L4-5 rotation angle by 14%-19%. In contrast, severe L4-5 decreased L4-5 rotation angle. Concurrently, mild and moderate L5-S degeneration increased the rotation angle, respectively, by 15% and 6%, and severe degeneration decreased the rotation angle by 29%. CONCLUSIONS: Different loading motions in double-level degeneration had differing effects on the ROM. These changes are important to understand the biomechanics of the progression of disk degeneration in the lower lumbar spine. Our results provide insights for the clinical intervention of double-level intervertebral disks.
Asunto(s)
Degeneración del Disco Intervertebral/patología , Vértebras Lumbares/patología , Adulto , Análisis de Elementos Finitos , Humanos , Masculino , Fibras Nerviosas/patología , Rango del Movimiento Articular , Valores de Referencia , Rotación , Tomografía Computarizada por Rayos X , Torsión MecánicaRESUMEN
AIMS: This study aims to investigate the effect of allicin on motor functions and histopathologic changes after spinal cord injury and the mechanism underlying its neuroprotective effects. MAIN METHODS: The motor function of rats was evaluated with the Basso, Beattie, and Bresna test. Histopathologic changes were evaluated by hematoxylin and eosin and Nissl staining. Spinal cord oxidative stress markers were determined by measuring glutathione and malondialdehyde content and superoxide dismutase activity using commercial kits. Inflammatory factors were determined by measuring tumor necrosis factor-α, interleukin-1ß and interleukin-6 using ELISA assay. Apoptosis was examined using TUNEL staining. The effect of allicin on Nrf2 protein levels and localization was assessed using immunofluorescence staining and Western blotting analysis. KEY FINDINGS: Results demonstrated that allicin accelerated the motor functional recovery and protected neuron damage against spinal cord injury (SCI). SCI-induced oxidative stress, inflammatory response and cell apoptosis in the spinal cord were also prevented by allicin. In addition, we observed that SCI increased Nrf2 nuclear expression, and allicin treatment further increased Nrf2 nuclear translocation in neurons and astrocytes. siRNA-mediated Nrf2 gene knockdown completely blocked the effect of allicin on spinal cord tissue. SIGNIFICANCE: Our finding suggests that allicin promotes the recovery of motor function after SCI in rats, and this effect may be related to its anti-oxidant, anti-inflammatory and anti-apoptotic effects. Allicin mediated Nrf2 nuclear translocation may be involved in the protective effect as well.