Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 154
Filtrar
1.
Adv Healthc Mater ; : e2303737, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38560921

RESUMEN

Tissue engineering heart valves (TEHVs) are expected to address the limitations of mechanical and bioprosthetic valves used in clinical practice. Decellularized heart valve (DHV) is an important scaffold of TEHVs due to its natural three-dimensional structure and bioactive extracellular matrix, but its mechanical properties and hemocompatibility are impaired. In this study, DHV is cross-linked with three different molecular weights of oxidized hyaluronic acid (OHA) by a Schiff base reaction and presented enhanced stability and hemocompatibility, which could be mediated by the molecular weight of OHA. Notably, DHV cross-linked with middle- and high-molecular-weight OHA could drive the macrophage polarization toward the M2 phenotype in vitro. Moreover, DHV cross-linked with middle-molecular-weight OHA scaffolds are further modified with RGD-PHSRN peptide (RPF-OHA/DHV) to block the residual aldehyde groups of the unreacted OHA. The results show that RPF-OHA/DHV not only exhibits anti-calcification properties, but also facilitates endothelial cell adhesion and proliferation in vitro. Furthermore, RPF-OHA/DHV shows excellent performance under an in vivo hemodynamic environment with favorable recellularization and immune regulation without calcification. The optimistic results demonstrate that OHA with different molecular weights has different cross-linking effects on DHV and that RPF-OHA/DHV scaffold with enhanced immune regulation, anti-calcification, and recellularization properties for clinical transformation.

2.
Anal Chim Acta ; 1304: 342540, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38637050

RESUMEN

BACKGROUND: Mastitis, a pervasive and detrimental disease in dairy farming, poses a significant challenge to the global dairy industry. Monitoring the milk somatic cell count (SCC) is vital for assessing the incidence of mastitis and the quality of raw cow's milk. However, existing SCC detection methods typically require large-scale instruments and specialized operators, limiting their application in resource-constrained settings such as dairy farms and small-scale labs. To address these limitations, this study introduces a novel, smartphone-based, on-site SCC testing method that leverages smartphone capabilities for milk somatic cell identification and enumeration, offering a portable and user-friendly testing platform. RESULTS: The central findings of our study demonstrate the effectiveness of the proposed method for counting milk somatic cells. Its on-site applicability, facilitated by the microfluidic chip, optical system, and smartphone integration, heralds a paradigm shift in point-of-care testing (POCT) for dairy farms and smaller laboratories. This approach bypasses complex processing and presents a user-friendly solution for real-time SCC monitoring in resource-limited settings. This device boasts several unique features: small size, low cost (<$1,000 total manufacturing cost and <$1 per test), and high accuracy. Remarkably, it delivers test results within just 2 min. Actual-sample testing confirmed its consistency with results from the commercial Bentley FTS/FCM cytometer, affirming the reliability of the proposed method. Overall, these results underscore the potential for transformative change in dairy farm management and laboratory testing practices. SIGNIFICANCE: In summary, this study concludes that the proposed smartphone-based method significantly contributes to the accessibility and ease of SCC testing in resource-limited environments. By fostering the use of POCT technology in food safety control, particularly in the dairy industry, this innovative approach has the potential to revolutionize the monitoring and management of mastitis, ultimately benefiting the global dairy sector.


Asunto(s)
Mastitis , Leche , Humanos , Animales , Femenino , Bovinos , Sistemas de Atención de Punto , Reproducibilidad de los Resultados , Teléfono Inteligente , Recuento de Células/métodos , Industria Lechera/métodos , Mastitis/veterinaria
3.
Ultrason Sonochem ; 105: 106859, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38552298

RESUMEN

With the tertiary oil recovery in the oilfield, the content of aging oil emulsion with high water content and complex components has become more prevalent, so it is crucial for aging oil to break the emulsification. In this paper, the experimental laws of water content are explored under the conditions of different transducer input powers through the ultrasonic reforming of aging oil, and the microscopic topography, particle size, components, etc. of oil samples before and after the irradiation of ultrasound are characterized through the microscopic analysis, particle size analysis and component analysis and other ways. The results show that the oil samples achieve the effect of demulsification and dehydration in the presence of ultrasonic cavitation effect, with a maximum dehydration rate of 98.24 %, and that the dehydration rate follows an "M-type" trend with the increase of power. The results of microscopic and particle size analyses demonstrate that ultrasonic irradiation destabilizes the oil-water interfacial membrane, and causes droplets of different sizes to collide, agglomerate, and settle. It was also observed that the droplets of the emulsion system are more evenly distributed and the intervals are increased. Furthermore, we hypothesize that ultrasound may be less irreversible in demulsification and dehydration of aging oil.

4.
Nanoscale ; 16(7): 3226-3242, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38284230

RESUMEN

Chimeric antigen receptor T (CAR-T) cells have shown promising outcomes in the treatment of hematologic malignancies. However, CAR-T cell therapy in solid tumor treatment has been significantly hindered, due to the complex manufacturing process, difficulties in proliferation and infiltration, lack of precision, or poor visualization ability. Fortunately, recent reports have shown that functional biomaterial designs such as nanoparticles, polymers, hydrogels, or implantable scaffolds might have potential to address the above challenges. In this review, we aim to summarize the recent advances in the designs of functional biomaterials for assisting CAR-T cell therapy for potential solid tumor treatments. Firstly, by enabling efficient CAR gene delivery in vivo and in vitro, functional biomaterials can streamline the difficult process of CAR-T cell therapy manufacturing. Secondly, they might also serve as carriers for drugs and bioactive molecules, promoting the proliferation and infiltration of CAR-T cells. Furthermore, a number of functional biomaterial designs with immunomodulatory properties might modulate the tumor microenvironment, which could provide a platform for combination therapies or improve the efficacy of CAR-T cell therapy through synergistic therapeutic effects. Last but not least, the current challenges with biomaterials-based CAR-T therapies will also be discussed, which might be helpful for the future design of CAR-T therapy in solid tumor treatment.


Asunto(s)
Neoplasias , Receptores Quiméricos de Antígenos , Humanos , Terapia Combinada , Neoplasias/terapia , Materiales Biocompatibles/uso terapéutico , Tratamiento Basado en Trasplante de Células y Tejidos , Microambiente Tumoral
5.
Adv Mater ; 36(5): e2310078, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37947048

RESUMEN

Chimeric antigen receptor (CAR)-T cell immunotherapy is approved in the treatment of hematological malignancies, but remains far from satisfactory in solid tumor treatment due to inadequate intra-tumor CAR-T cell infiltration. Herein, an injectable supramolecular hydrogel system, based on self-assembly between cationic polymer mPEG-PCL-PEI (PPP) conjugated with T cell targeting anti-CD3e f(ab')2 fragment and α-cyclodextrin (α-CD), is designed to load plasmid CAR (pCAR) with a T cell specific CD2 promoter, which successfully achieves in situ fabrication and effective accumulation of CAR-T cells at the tumor site in humanized mice models. More importantly, due to this tumor microenvironment reprogramming, secretion of cellular inflammatory cytokines (interleukin-2 (IL-2), tumor necrosis factor-α (TNF-α), and interferon-γ (IFN-γ)) or tumor killer protein granzyme B is significantly promoted, which reverses the immunosuppressive microenvironment and significantly enhances the intra-tumor CAR-T cells and cytotoxic T cells infiltration. To the best of the current knowledge, this is a pioneer report of using injectable supramolecular hydrogel for in situ reprogramming CAR-T cells, which might be beneficial for solid tumor CAR-T immunotherapy.


Asunto(s)
Hidrogeles , Neoplasias , Animales , Ratones , Citocinas/metabolismo , Inmunoterapia , Neoplasias/patología , Linfocitos T Citotóxicos/metabolismo , Microambiente Tumoral , Humanos
6.
Adv Healthc Mater ; 13(2): e2302012, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37742136

RESUMEN

Mitochondrial potassium ion channels have become a promising target for cancer therapy. However, in malignant tumors, their low expression or inhibitory regulation typically leads to undesired cancer therapy, or even induces drug resistance. Herein, this work develops an in situ mitochondria-targeted artificial K+ channel construction strategy, with the purpose to trigger cancer cell apoptosis by impairing mitochondrial ion homeostasis. Considering the fact that cancer cells have a lower membrane potential than that of normal cells, this strategy can selectively deliver artificial K+ channel molecule 5F8 to the mitochondria of cancer cells, by using a mitochondria-targeting triphenylphosphine (TPP) modified block polymer (MPTPP) as a carrier. More importantly, 5F8 can further specifically form a K+ -selective ion channel through the directional assembly of crown ethers on the mitochondrial membrane, thereby inducing mitochondrial K+ influx and disrupting ions homeostasis. Thanks to this design, mitochondrial dysfunction, including decreased mitochondrial membrane potential, reduced adenosine triphosphate (ATP) synthesis, downregulated antiapoptotic BCL-2 and MCL-1 protein levels, and increased reactive oxygen species (ROS) levels, can further effectively induce the programmed apoptosis of multidrug-resistant cancer cells, no matter in case of pump or nonpump dependent drug resistance. In short, this mitochondria-targeted artificial K+ -selective ion channel construction strategy may be beneficial for potential drug resistance cancer therapy.


Asunto(s)
Nanopartículas , Neoplasias , Resistencia a Múltiples Medicamentos , Resistencia a Antineoplásicos , Mitocondrias , Adenosina Trifosfato/metabolismo , Canales Iónicos/metabolismo , Homeostasis , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo
7.
Aging (Albany NY) ; 15(23): 13865-13875, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-38054825

RESUMEN

Acute lung injury (ALI) is characterized by severely damaged alveoli and blood vessels, seriously affecting the health of patients and causing a high mortality rate. The pathogenesis of ALI is complex, with inflammatory reactions and oxidative stress (OS) mainly involved. S14G humanin (HNG) is derived from humanin (HN), which is claimed with promising anti-inflammatory functions. Herein, the protective influence of HNG on ALI will be explored in a mouse model. The ALI model was established in mice via intratracheal instillation of 3 mg/kg LPS, followed by an intraperitoneal injection of 3 and 6 mg/kg HNG, respectively. Thicker alveolar walls, aggravated neutrophil infiltration, and increased wet weight/dry weight (W/D) ratio were observed in ALI mice, accompanied by an aggravated apoptotic state, all of which were notably alleviated by HNG. Furthermore, increased number of total cells and neutrophils in bronchoalveolar lavage fluid (BALF), elevated secretion of inflammatory cytokines, enhanced reactive oxygen species (ROS) and Malondialdehyde (MDA) levels, and declined superoxide dismutase-2 (SOD2) levels were observed in ALI mice, which were markedly ameliorated by HNG. Moreover, the upregulated levels of NOD-like receptor family pyrin domain containing 3 (NLRP3), caspase-1, and caspases cleave gasdermin D N/caspases cleave gasdermin D FL (GSDMD N/GSDMD FL) in ALI mice were signally repressed by HNG. Lastly, the upregulation of Toll-like receptor 4 (TLR4) and p-p65/p65, and downregulation of IκB-α observed in ALI mice were sharply reversed by HNG. Collectively, HNG alleviated the ALI in mice by inhibiting the activation of nuclear factor kappa B (NF-κB) signaling.


Asunto(s)
Lesión Pulmonar Aguda , FN-kappa B , Humanos , Ratones , Animales , FN-kappa B/metabolismo , Gasderminas , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/patología , Pulmón/patología , Caspasas , Lipopolisacáridos
8.
Appl Opt ; 62(36): 9621-9630, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38108789

RESUMEN

Photoelectric imaging systems typically employ a focal plane detector structure, rendering them vulnerable to laser damage. Laser damage can severely impair or even completely deprive the information acquisition capability of photoelectric imaging systems. A laser damage protection method based on a microlens array light field imaging system is proposed to prevent photoelectric imaging systems from laser damage. The technique utilizes the light field modulation effect of the microlens array to homogenize the spot energy, thereby reducing the maximum single-pixel receiving power at the image sensor. The method's effectiveness has been verified through numerical simulations and experimental validation. First, the laser transmission theoretical model of light field imaging is proposed. Then an experimental setup is established, and measurements are conducted to capture the spot profiles and intensity distributions on the imaging plane across various defocus distances. Finally, the impact of the propagation distance on the maximum single-pixel receiving power and suppression ratio of the light field imaging system is experimentally measured. The simulation and experimental results indicate that, with the proposed method, the energy suppression ratio can easily reach two orders of magnitude, significantly reducing the probability of laser damage in photoelectric imaging systems.

9.
Front Optoelectron ; 16(1): 26, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37751040

RESUMEN

The widely tunable and high resolution mid-infrared laser based on a BaGa4Se7 (BGSe) optical parametric oscillator (OPO) was demonstrated. A wavelength tuning range of 2.76-4.64 µm and a wavelength tuning resolution of about 0.3 nm were obtained by a BGSe (56.3°, 0°) OPO, which was pumped by a 1064 nm laser. It is the narrowest reported wavelength tuning resolution for BGSe OPO, and was obtained by simultaneously controlling the angle and temperature of BGSe.

10.
Mil Med Res ; 10(1): 37, 2023 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-37608335

RESUMEN

The treatment of chronic and non-healing wounds in diabetic patients remains a major medical problem. Recent reports have shown that hydrogel wound dressings might be an effective strategy for treating diabetic wounds due to their excellent hydrophilicity, good drug-loading ability and sustained drug release properties. As a typical example, hyaluronic acid dressing (Healoderm) has been demonstrated in clinical trials to improve wound-healing efficiency and healing rates for diabetic foot ulcers. However, the drug release and degradation behavior of clinically-used hydrogel wound dressings cannot be adjusted according to the wound microenvironment. Due to the intricacy of diabetic wounds, antibiotics and other medications are frequently combined with hydrogel dressings in clinical practice, although these medications are easily hindered by the hostile environment. In this case, scientists have created responsive-hydrogel dressings based on the microenvironment features of diabetic wounds (such as high glucose and low pH) or combined with external stimuli (such as light or magnetic field) to achieve controllable drug release, gel degradation, and microenvironment improvements in order to overcome these clinical issues. These responsive-hydrogel dressings are anticipated to play a significant role in diabetic therapeutic wound dressings. Here, we review recent advances on responsive-hydrogel dressings towards diabetic wound healing, with focus on hydrogel structure design, the principle of responsiveness, and the behavior of degradation. Last but not least, the advantages and limitations of these responsive-hydrogels in clinical applications will also be discussed. We hope that this review will contribute to furthering progress on hydrogels as an improved dressing for diabetic wound healing and practical clinical application.


Asunto(s)
Diabetes Mellitus , Médicos , Humanos , Hidrogeles/farmacología , Hidrogeles/uso terapéutico , Antibacterianos , Vendajes
12.
Front Bioeng Biotechnol ; 11: 1194398, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37288357

RESUMEN

Introduction: Diabetic oral mucosa ulcers face challenges of hypoxia, hyperglycemia and high oxidative stress, which result in delayed healing process. Oxygen is regarded as an important substance in cell proliferation, differentiation and migration, which is beneficial to ulcer recovery. Methods: This study developed a multi-functional GOx-CAT nanogel (GCN) system for the treatment of diabetic oral mucosa ulcers. The catalytic activity, ROS scavenge and oxygen supply ability of GCN was validated. The therapeutic effect of GCN was verified in the diabetic gingival ulcer model. Results: The results showed that the nanoscale GCN was capable of significantly eliminating intracellular ROS, increasing intracellular oxygen concentration and accelerating cell migration of human gingival fibroblasts, which could promote diabetic oral gingival ulcer healing in vivo by alleviating inflammation and promoting angiogenesis. Discussion: This multifunctional GCN with ROS depletion, continuous oxygen supply and good biocompatibility, which might provide a novel therapeutic strategy for effective treatment of diabetic oral mucosa ulcers.

13.
Biomater Sci ; 11(15): 5078-5094, 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37282836

RESUMEN

Non-viral polymeric vectors with good biocompatibility have been recently explored as delivery systems for clustered regularly interspaced short palindromic repeat (CRISPR)-associated (Cas) nucleases. In this review, based on current limitations and critical barriers, we summarize the advantages of stimulus-responsive polymeric delivery vectors (i.e., pH, redox, or enzymes) towards controllable CRISPR/Cas9 genome editing system delivery as well as the advances in using stimulus-responsive CRISPR/Cas9 polymeric carriers towards cancer treatment. Last but not least, the key challenges and promising development strategies of stimulus-responsive polymeric vector designs for CRISPR/Cas9 systems will also be discussed.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Terapia Genética , Técnicas de Transferencia de Gen , Endonucleasas/genética , Endonucleasas/metabolismo , Polímeros
14.
Macromol Biosci ; 23(10): e2300157, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37262405

RESUMEN

Inflammatory bowel disease (IBD) is a type of chronic inflammatory disorder that interferes with the patient's lifestyle and, in extreme situations, can be deadly. Fortunately, with the ever-deepening understanding of the pathological cause of IBD, recent studies using nanozyme-based materials have indicated the potential toward effective IBD treatment. In this review, the recent advancement of nanozymes for the treatment of enteritis is summarized from the perspectives of the structural design of nanozyme-based materials and therapeutic strategies, intending to serve as a reference to produce effective nanozymes for moderating inflammation in the future. Last but not least, the potential and current restrictions for using nanozymes in IBD will also be discussed. In short, this review may provide a guidance for the development of innovative enzyme-mimetic nanomaterials that offer a novel and efficient approach toward the effective treatment of IBD.

15.
iScience ; 26(6): 106956, 2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37378311

RESUMEN

Pressure injuries (PIs) are localized tissue damage resulting from prolonged compression or shear forces on the skin or underlying tissue, or both. Different stages of PIs share common features include intense oxidative stress, abnormal inflammatory response, cell death, and subdued tissue remodeling. Despite various clinical interventions, stage 1 or stage 2 PIs are hard to monitor for the changes of skin or identify from other disease, whereas stage 3 or stage 4 PIs are challenging to heal, painful, expensive to manage, and have a negative impact on quality of life. Here, we review the underlying pathogenesis and the current advances of biochemicals in PIs. We first discuss the crucial events involved in the pathogenesis of PIs and key biochemical pathways lead to wound delay. Then, we examine the recent progress of biomaterials-assisted wound prevention and healing and their prospects.

16.
ACS Nano ; 17(11): 9826-9849, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37207347

RESUMEN

The development of nanovaccines that employ polymeric delivery carriers has garnered substantial interest in therapeutic treatment of cancer and a variety of infectious diseases due to their superior biocompatibility, lower toxicity and reduced immunogenicity. Particularly, stimuli-responsive polymeric nanocarriers show great promise for delivering antigens and adjuvants to targeted immune cells, preventing antigen degradation and clearance, and increasing the uptake of specific antigen-presenting cells, thereby sustaining adaptive immune responses and improving immunotherapy for certain diseases. In this review, the most recent advances in the utilization of stimulus-responsive polymer-based nanovaccines for immunotherapeutic applications are presented. These sophisticated polymeric nanovaccines with diverse functions, aimed at therapeutic administration for disease prevention and immunotherapy, are further classified into several active domains, including pH, temperature, redox, light and ultrasound-sensitive intelligent nanodelivery systems. Finally, the potential strategies for the future design of multifunctional next-generation polymeric nanovaccines by integrating materials science with biological interface are proposed.


Asunto(s)
Vacunas contra el Cáncer , Nanopartículas , Neoplasias , Humanos , Neoplasias/terapia , Sistemas de Liberación de Medicamentos , Inmunoterapia , Antígenos , Adyuvantes Inmunológicos , Nanopartículas/química
17.
Sci Total Environ ; 883: 163403, 2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37059147

RESUMEN

Drought is a prolonged dry period in the natural climate cycle, and is one of the most costly weather events. The Gravity Recovery and Climate Experiment (GRACE) derived terrestrial water storage anomalies (TWSA) have been widely used to assess drought severity. However, the relatively short cover period of GRACE and GRACE Follow-On limit our knowledge about the characterization and evolution of drought over decades time scale. This study proposes a standardized GRACE reconstructed TWSA index (SGRTI) to assess the drought severity based on a statistical reconstruction method calibrated by GRACE observations. Results show that the SGRTI correlates well with 6-month scale SPI and SPEI, with correlation coefficients reaching 0.79 and 0.81 in the YRB from 1981 to 2019. Soil moisture can capture drought condition like the SGRTI, while cannot further reflect deeper water storage depletion. The SGRTI is also comparable to the SRI and in-situ water level. As a case study for the Yangtze River Basin, its three sub-basins experience more frequent droughts, shorter drought duration, and lower severity drought, as identified by SGRTI during 1992-2019 relative to 1963-1991. The presented SGRTI in this study can provide a valuable supplement to the drought index before the GRACE era.

18.
Appl Radiat Isot ; 194: 110711, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36804701

RESUMEN

X-ray transmission imaging (XRT) is widely used for sorting materials. However, conventional single-energy and dual-energy X-ray systems have poor ability to discriminate between materials with similar atomic number (Z), and the count rate of available multi-energy XRT detectors could not support high-speed industrial applications. This paper presents the design of a detector that can potentiality achieve high-speed multi-energy X-ray imaging using Geant4 simulations. This detector consisted of five detection layers (with three scintillator materials: CsI, GOS and CdWO4), two metal filters, which allows X-ray imaging at five energies. Validation simulation showed that the 15% more accurate than a dual-layers detector in the classification of Mg and Al alloys.

19.
Pharmaceutics ; 14(12)2022 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-36559118

RESUMEN

For the delivery of anticancer drugs, an injectable in situ hydrogel with thermal responsiveness and prolonged drug release capabilities shows considerable potential. Here, we present a series of thermosensitive in situ hydrogels that serve as drug delivery systems for the treatment of liver cancer. These hydrogels were created by utilizing the polydimethylsiloxane (PDMS) oligomer, polyethylene glycol (PEG) and polypropylene glycol (PPG)'s chemical cross-linking capabilities. Doxorubicin (DOX) was encapsulated in a hydrogel with a hydrophobic core and hydrophilic shell to enhance DOX solubility. Studies into the behavior of in situ produced hydrogels at the microscopic and macroscopic levels revealed that the copolymer solution exhibits a progressive shift from sol to gel as the temperature rises. The hydrogels' chemical composition, thermal properties, rheological characteristics, gelation period, and DOX release behavior were all reported. Subcutaneous injection in mice was used to confirm the injectability. Through the in vitro release of DOX in a PBS solution that mimics the tumor microenvironment, the hydrogel's sustained drug release behavior was confirmed. Additionally, using human hepatocellular hepatoma, the anticancer efficacy of thermogel (DEP-2@DOX) was assessed (HepG2). The carrier polymer material DEP-2 was tested for cytotoxicity using HepG2 cells and its excellent cytocompatibility was confirmed. In conclusion, these thermally responsive injectable hydrogels are prominent potential candidates as drug delivery vehicles for the treatment of hepatocellular carcinoma.

20.
Nat Commun ; 13(1): 5985, 2022 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-36216956

RESUMEN

Cholesterol-enhanced pore formation is one evolutionary means cholesterol-free bacterial cells utilize to specifically target cholesterol-rich eukaryotic cells, thus escaping the toxicity these membrane-lytic pores might have brought onto themselves. Here, we present a class of artificial cholesterol-dependent nanopores, manifesting nanopore formation sensitivity, up-regulated by cholesterol of up to 50 mol% (relative to the lipid molecules). The high modularity in the amphiphilic molecular backbone enables a facile tuning of pore size and consequently channel activity. Possessing a nano-sized cavity of ~ 1.6 nm in diameter, our most active channel Ch-C1 can transport nanometer-sized molecules as large as 5(6)-carboxyfluorescein and display potent anticancer activity (IC50 = 3.8 µM) toward human hepatocellular carcinomas, with high selectivity index values of 12.5 and >130 against normal human liver and kidney cells, respectively.


Asunto(s)
Nanoporos , Humanos , Lípidos , Membranas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA