RESUMEN
INTRODUCTION: Arterial calcification, an independent predictor of cardiovascular events, increases morbidity and mortality in patients with diabetes mellitus (DM), but its mechanisms remain unclear. Extracellular vesicles (EVs) play an important role in intercellular communication. The study investigates the role and potential mechanisms of EVs derived from endothelial cells (ECs) in regulating vascular smooth muscle cell (VSMC) calcification under high glucose (HG) condition, with a goal of developing effective prevention and treatment strategies for diabetic arterial calcification. RESULTS: The results showed that EVs derived from HG induced ECs (ECHG-EVs) exhibited a bilayer structure morphology with a mean diameter of 74.08 ± 31.78 nm, expressing EVs markers including CD9, CD63 and TSG101, but not express calnexin. ECHG-EVs was internalized by VSMCs and induced VSMC calcification by increasing Runx2 expression and mineralized nodule formation. The circ_0008362 was enriched in ECHG-EVs, and it can be transmitted to VSMCs to promote VSMC calcification both in vitro and in vivo. Mechanistically, miR-1251-5p might be one of the targets of circ_0008362 and they were co-localization in the cytoplasm of VSMCs. Runx2 was identified as the downstream target of miR-1251-5p, and circ_0008362 acted as a sponge, enhancing Runx2 expression and then promoted VSMC calcification. Besides, circ_0008362 could directly interact with Runx2 to aggravate VSMC calcification. Notably, DiR-labelled ECHG-EVs was detected in the vessels of mice. Meanwhile, the level of circ_0008362 and Runx2 were increased significantly, while the expression of miR-1251-5p was decreased significantly in calcified artery tissues of mice. However, inhibiting the release of EVs by GW4869 attenuated arterial calcification in diabetic mice. Finally, the level of circulation of plasma EVs circ_0008362 was significantly higher in patients with DM compared with normal controls. Elevated levels of plasma EVs circ_0008362 were associated with more severe coronary and aorta artery calcification in patients with DM. CONCLUSIONS: Our findings suggested that circ_0008362 was enriched in EVs derived from ECs and promoted VSMC calcification under HG conditions, both by sponging miR-1251-5p to upregulate Runx2 expression and through direct interaction with Runx2. Furthermore, elevated levels of plasma EVs circ_0008362 were associated with more severe coronary and aorta artery calcification in patients with DM. These results may serve as a potential prevention and therapeutic target for diabetic arterial calcification.
Asunto(s)
Subunidad alfa 1 del Factor de Unión al Sitio Principal , Angiopatías Diabéticas , Células Endoteliales , MicroARNs , Músculo Liso Vascular , Miocitos del Músculo Liso , Transducción de Señal , Calcificación Vascular , Animales , Humanos , Masculino , Ratones , Enfermedades de la Aorta/patología , Enfermedades de la Aorta/metabolismo , Enfermedades de la Aorta/genética , Células Cultivadas , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Angiopatías Diabéticas/metabolismo , Angiopatías Diabéticas/patología , Angiopatías Diabéticas/genética , Angiopatías Diabéticas/etiología , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Células Endoteliales/patología , Vesículas Extracelulares/metabolismo , Regulación de la Expresión Génica , Ratones Endogámicos C57BL , MicroARNs/metabolismo , MicroARNs/genética , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , ARN Circular/metabolismo , ARN Circular/genética , Calcificación Vascular/metabolismo , Calcificación Vascular/patología , Calcificación Vascular/genéticaRESUMEN
Purpose: Anecdotal reports have praised the benefits of cold exposure, exemplified by activities like winter swimming and cold water immersion. Cold exposure has garnered acclaim for its potential to confer benefits and potentially alleviate diabetes. We posited that systemic cold temperature (CT, 4-8°C) likely influences the organism's blood components through ambient temperature, prompting our investigation into the effects of chronic cold exposure on type 2 diabetic (T2DM) mice and our initial exploration of how cold exposure mitigates the incidence of T2DM. Methods: The effects of CT (4-8°C) or room temperature (RT, 22-25°C) on T2DM mice were investigated. Mice blood and organ specimens were collected for fully automated biochemical testing, ELISA, HE staining, immunohistochemistry, and immunofluorescence. Glucose uptake was assessed using flow cytometry with 2-NBDG. Changes in potential signaling pathways such as protein kinase B (AKT), phosphorylated AKT (p-AKT), insulin receptor substrates 1 (IRS1), and phosphorylated IRS1 (p-IRS1) were evaluated by Western blot. Results: CT or CT mice plasma-derived extracellular vesicles (CT-EVs) remarkably reduced blood glucose levels and improved insulin sensitivity in T2DM mice. This treatment enhanced glucose metabolism, systemic insulin sensitivity, and insulin secretion function while promoting glycogen accumulation in the liver and muscle. Additionally, CT-EVs treatment protected against the streptozocin (STZ)-induced destruction of islets in T2DM mice by inhibiting ß-cell apoptosis. CT-EVs also shielded islets from destruction and increased the expression of p-IRS1 and p-AKT in adipocytes and hepatocytes. In vitro experiments further confirmed its pro-insulin sensitivity effect. Conclusion: Our data indicate that cold exposure may have a potentially beneficial effect on the development of T2DM, mainly through the anti-diabetic effect of plasma-derived EVs released during cold stimulation. This phenomenon could significantly contribute to understanding the lower prevalence of diabetes in colder regions.
Asunto(s)
Glucemia , Frío , Diabetes Mellitus Tipo 2 , Vesículas Extracelulares , Resistencia a la Insulina , Animales , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/terapia , Ratones , Masculino , Diabetes Mellitus Experimental/terapia , Ratones Endogámicos C57BL , Insulina/sangre , Transducción de Señal , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Sustrato del Receptor de Insulina/metabolismo , Hígado/metabolismoRESUMEN
Vascular calcification and vascular ageing are "silent" diseases but are highly prevalent in patients with end stage renal failure and type 2 diabetes, as well as in the ageing population. Melatonin (MT) has been shown to induce cardiovascular protection effects. However, the role of MT on vascular calcification and ageing has not been well-identified. In this study, the aortic transcriptional landscape revealed clues for MT related cell-to-cell communication between endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) in vascular calcification and vascular ageing. Furthermore, we elucidated that it was exosomes that participate in the information transportation from ECs to VSMCs. The exosomes secreted from melatonin-treated ECs (MT-ECs-Exos) inhibited calcification and senescence of VSMCs. Mechanistically, miR-302d-5p was highly enriched in MT-ECs-Exos, while depletion of miR-302d-5p blocked the ability of MT-ECs-Exos to suppress VSMC calcification and senescence. Notably, Wnt3 was a bona fide target of miR-302d-5p and modulated VSMC calcification and senescence. Furthermore, we found that maturation of endothelial derived exosomal miR-302d-5p was promoted by WTAP in an N6-methyladenosine (m6A)-dependent manner. Interestingly, MT alleviated vascular calcification and ageing in 5/6-nephrectomy (5/6 NTP) mice, a chronic kidney disease (CKD) induced vascular calcification and vascular ageing mouse model. MT-ECs-Exos was absorbed by VSMCs in vivo and effectively prevented vascular calcification and ageing in 5/6 NTP mice. ECs-derived miR-302d-5p mediated MT induced anti-calcification and anti-ageing effects in 5/6 NTP mice. Our study suggests that MT-ECs-Exos alleviate vascular calcification and ageing through the miR-302d-5p/Wnt3 signaling pathway, dependent on m6A methylation.
RESUMEN
BACKGROUND: Visceral adipose tissue in individuals with obesity is an independent cardiovascular risk indicator. However, it remains unclear whether adipose tissue influences common cardiovascular diseases, such as atherosclerosis, through its secreted exosomes. METHODS: The exosomes secreted by adipose tissue from diet-induced obesity mice were isolated to examine their impact on the progression of atherosclerosis and the associated mechanism. Endothelial apoptosis and the proliferation and migration of vascular smooth muscle cells (VSMCs) within the atherosclerotic plaque were evaluated. Statistical significance was analyzed using GraphPad Prism 9.0 with appropriate statistical tests. RESULTS: We demonstrate that adipose tissue-derived exosomes (AT-EX) exacerbate atherosclerosis progression by promoting endothelial apoptosis, proliferation, and migration of VSMCs within the plaque in vivo. MicroRNA-132/212 (miR-132/212) was detected within AT-EX cargo. Mechanistically, miR-132/212-enriched AT-EX exacerbates palmitate acid-induced endothelial apoptosis via targeting G protein subunit alpha 12 and enhances platelet-derived growth factor type BB-induced VSMC proliferation and migration by targeting phosphatase and tensin homolog in vitro. Importantly, melatonin decreases exosomal miR-132/212 levels, thereby mitigating the pro-atherosclerotic impact of AT-EX. CONCLUSION: These data uncover the pathological mechanism by which adipose tissue-derived exosomes regulate the progression of atherosclerosis and identify miR-132/212 as potential diagnostic and therapeutic targets for atherosclerosis.
Asunto(s)
Apoptosis , Aterosclerosis , Movimiento Celular , Proliferación Celular , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Exosomas , Ratones Endogámicos C57BL , MicroARNs , Músculo Liso Vascular , Miocitos del Músculo Liso , Placa Aterosclerótica , Animales , Humanos , Masculino , Ratones , Enfermedades de la Aorta/patología , Enfermedades de la Aorta/metabolismo , Enfermedades de la Aorta/genética , Apoptosis/efectos de los fármacos , Aterosclerosis/metabolismo , Aterosclerosis/patología , Aterosclerosis/genética , Becaplermina/farmacología , Becaplermina/metabolismo , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Células Endoteliales/metabolismo , Células Endoteliales/patología , Células Endoteliales/efectos de los fármacos , Exosomas/metabolismo , Exosomas/patología , Grasa Intraabdominal/metabolismo , Grasa Intraabdominal/patología , Ratones Noqueados para ApoE , MicroARNs/metabolismo , MicroARNs/genética , Músculo Liso Vascular/patología , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Miocitos del Músculo Liso/efectos de los fármacos , Obesidad/metabolismo , Obesidad/patología , Transducción de SeñalRESUMEN
Ketones, such as beta-hydroxybutyrate (BHB), are important metabolites that can be used to monitor for conditions such as diabetic ketoacidosis (DKA) and ketosis. Compared to conventional approaches that rely on samples of urine or blood evaluated using laboratory techniques, processes for monitoring of ketones in sweat using on-body sensors offer significant advantages. Here, we report a class of soft, skin-interfaced microfluidic devices that can quantify the concentrations of BHB in sweat based on simple and low-cost colorimetric schemes. These devices combine microfluidic structures and enzymatic colorimetric BHB assays for selective and accurate analysis. Human trials demonstrate the broad applicability of this technology in practical scenarios, and they also establish quantitative correlations between the concentration of BHB in sweat and in blood. The results represent a convenient means for managing DKA and aspects of personal nutrition/wellness.
Asunto(s)
Ácido 3-Hidroxibutírico , Técnicas Biosensibles , Colorimetría , Sudor , Humanos , Sudor/química , Colorimetría/instrumentación , Técnicas Biosensibles/instrumentación , Ácido 3-Hidroxibutírico/análisis , Cetonas/orina , Piel/química , Piel/metabolismo , Técnicas Analíticas Microfluídicas/instrumentación , Dispositivos Laboratorio en un Chip , Diseño de EquipoRESUMEN
Reactive oxygen species (ROS) hold great potential in tumor pyroptosis therapy, yet they are still limited by short species lifespan and limited diffusion distance. Inducing cells into a metastable state and then applying external energy can effectively trigger pyroptosis, but systemic sensitization still faces challenges, such as limited ROS content, rapid decay, and short treatment windows. Herein, a nanohybrid-based redox homeostasis-perturbator system was designed that synergistically induce early lysosomal escape, autophagy inhibition, and redox perturbation functions to effectively sensitize cells to address these challenges. Specifically, weakly alkaline layered double hydroxide nanosheets (LDH NSs) with pH-responsive degradation properties enabled early lysosomal escape within 4 h, releasing poly(L-dopa) nanoparticles for inducing catechol-quinone redox cycling in the cytoplasm. The intracellular ROS levels were systematically rebounded by 3-4 times in tumor cells and lasted for over 4 h. Subsequently induced lysosomal stress and Ca2+ signaling activation resulted in severe mitochondrial dysfunction, as well as a perilous metastable state. Thereby, sequential near-infrared light was applied to trigger amplified stress through a local photothermal conversion. This led to sufficiently high levels of cleaved caspase-1 and GSDMD activation (2.5-2.8-fold increment) and subsequent pyroptosis response. In addition, OH- released by LDH elevated pH to alleviate the limitation of glutathione depletion by quinones at acidic pH and inhibit protective autophagy. Largely secreted inflammatory factors (2.5-5.6-fold increment), efficient maturation of dendritic cells, and further immune stimulation were boosted for tumor inhibition as a consequence. This study offers a new paradigm and insights into the synergy of internal systematic cellular sensitization and sequential external energy treatment to achieve tumor suppression through pyroptosis.
Asunto(s)
Homeostasis , Lisosomas , Oxidación-Reducción , Piroptosis , Piroptosis/efectos de los fármacos , Lisosomas/metabolismo , Lisosomas/efectos de los fármacos , Humanos , Animales , Ratones , Homeostasis/efectos de los fármacos , Homeostasis/efectos de la radiación , Nanopartículas/química , Especies Reactivas de Oxígeno/metabolismo , Línea Celular Tumoral , Antineoplásicos/farmacología , Antineoplásicos/química , Terapia Fototérmica , Hidróxidos/química , Hidróxidos/farmacología , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Neoplasias/terapia , Neoplasias/metabolismoRESUMEN
ABSTRACT: This study investigated indoor radon concentrations in modern residential buildings in the Cold Area and Severe Cold Area in China. A total of 19 cities covering 16 provinces were selected with 1,610 dwellings measured for indoor radon concentration. The arithmetic mean and geometric mean of indoor radon concentration were 68 Bq m -3 and 57 Bq m -3 , respectively. It was found that indoor radon concentrations were much higher in the Severe Cold Area than those in the Cold Area. The indoor radon concentrations showed an increasing trend for newly constructed buildings. It was estimated that the average effective dose from inhalation of indoor radon is 2.15 mSv and 1.60 mSv for the Severe Cold Area and Cold Area, respectively. The more and more rigid energy-saving design for residential buildings in the Severe Cold Area and Cold Area has an obvious impact on the increased trend of indoor radon due to extremely low air exchange rate in China.
Asunto(s)
Contaminantes Radiactivos del Aire , Contaminación del Aire Interior , Vivienda , Monitoreo de Radiación , Radón , Radón/análisis , Contaminación del Aire Interior/análisis , China , Contaminantes Radiactivos del Aire/análisis , Monitoreo de Radiación/métodos , Humanos , Conservación de los Recursos EnergéticosRESUMEN
A few studies have explored the relationship between air pollution exposure and the risk of birth defects; however, the ozone-related (O3) effects on preconception and first-trimester exposures are still unknown. In this time-stratified case-crossover study, conditional logistic regressions were applied to explore the associations between O3 exposure and the risk of birth defects in Chongqing, China, and stratified analyses were constructed to evaluate the modifiable factors. A total of 6601 cases of birth defects were diagnosed, of which 56.16% were male. O3 exposure was associated with an increased risk of birth defects, and the most significant estimates were observed in the first month before pregnancy: a 10 ug/m3 increase of O3 was related to an elevation of 4.2% [95% confidence interval (CI), 3.4-5.1%]. The associations between O3 exposure and congenital malformations and deformations of the musculoskeletal system were statistically significant during almost all exposure periods. Pregnant women with lower education and income, and from rural areas, were more susceptible to O3 exposure, with the strongest odds ratios (ORs) of 1.066 (95%CI, 1.046-1.087), 1.086 (95%CI, 1.034-1.140), and 1.053 (95%CI, 1.034-1.072), respectively. Our findings highlight the health risks of air pollution exposure and raise awareness of pregnant women's vulnerability and the susceptibility window period.
RESUMEN
Recently, environmental temperature has been shown to regulate bone homeostasis. However, the mechanisms by which cold exposure affects bone mass remain unclear. In our present study, we observed that exposure to cold temperature (CT) decreased bone mass and quality in mice. Furthermore, a transplant of exosomes derived from the plasma of mice exposed to cold temperature (CT-EXO) can also impair the osteogenic differentiation of BMSCs and decrease bone mass by inhibiting autophagic activity. Rapamycin, a potent inducer of autophagy, can reverse cold exposure or CT-EXO-induced bone loss. Microarray sequencing revealed that cold exposure increases the miR-25-3p level in CT-EXO. Mechanistic studies showed that miR-25-3p can inhibit the osteogenic differentiation and autophagic activity of BMSCs. It is shown that inhibition of exosomes release or downregulation of miR-25-3p level can suppress CT-induced bone loss. This study identifies that CT-EXO mediates CT-induced osteoporotic effects through miR-25-3p by inhibiting autophagy via targeting SATB2, presenting a novel mechanism underlying the effect of cold temperature on bone mass.
Asunto(s)
Autofagia , Frío , Exosomas , Ratones Endogámicos C57BL , MicroARNs , Osteogénesis , Animales , Autofagia/efectos de los fármacos , Ratones , Exosomas/metabolismo , MicroARNs/metabolismo , MicroARNs/genética , Osteogénesis/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Osteoporosis/patología , Diferenciación Celular/efectos de los fármacos , Huesos/metabolismo , Femenino , Densidad Ósea , Sirolimus/farmacologíaRESUMEN
AIM AND OBJECTIVES: To investigate the prevalence of dysphagia in patients with COPD, identify the risk factors for dysphagia, develop a visual clinical prediction model and quantitatively predict the probability of developing dysphagia. BACKGROUND: Patients with COPD are at high risk of dysphagia, which is strongly linked to the acute exacerbation of their condition. The use of effective tools to predict its risk may contribute to the early identification and treatment of dysphagia in patients with COPD. DESIGN: A cross-sectional design. METHODS: From July 2021 to April 2023, we enrolled 405 patients with COPD for this study. The clinical prediction model was constructed according to the results of a univariate analysis and a logistic regression analysis, evaluated by discrimination, calibration and decision curve analysis and visualized by a nomogram. This study was reported using the TRIPOD checklist. RESULTS: In total, 405 patients with COPD experienced dysphagia with a prevalence of 59.01%. A visual prediction model was constructed based on age, whether combined with cerebrovascular disease, chronic pulmonary heart disease, acute exacerbation of COPD, home noninvasive positive pressure ventilation, dyspnoea level and xerostomia level. The model exhibited excellent discrimination at an AUC of .879. Calibration curve analysis indicated a good agreement between experimental and predicted values, and the decision curve analysis showed a high clinical utility. CONCLUSION: The model we devised may be used in clinical settings to predict the occurrence of dysphagia in patients with COPD at an early stage. RELEVANCE TO CLINICAL PRACTICE: The model can help nursing staff to calculate the risk probability of dysphagia in patients with COPD, formulate personalized preventive care measures for high-risk groups as soon as possible to achieve early prevention or delay of dysphagia and its related complications and improve the prognosis. PATIENT OR PUBLIC CONTRIBUTION: No patient or public contribution.
RESUMEN
Introduction: Radon (222Rn or 222radon) is a radioactive gas emitted from building materials, foundations, and soil. Children are especially susceptible to radon exposure, underscoring the need to assess indoor radon levels in kindergartens. This study monitored radon concentrations in 37 Beijing kindergartens from June to October 2023. Methods: A random sample of 37 kindergartens was selected from 18 administrative districts in Beijing. The indoor radon concentration was measured using the solid track accumulation method, with radon detectors continuously monitored over a 3-month period. Results: The mean indoor radon level in 37 kindergartens, observed at 252 monitoring points, was 84.3 Bq/m3, with values varying from 12.9 to 263.5 Bq/m3. About 20.2% of points showed radon levels between 100.0 and 200.0 Bq/m3, while 2.4% exceeded 200.0 Bq/m3. Notably, radon levels were significantly elevated on the ground floor compared to the upper floors. Conclusion: Indoor radon levels in 37 kindergartens remained below the national standard limit of 300.0 Bq/m3 for buildings (GB/T 16146-2015). Nonetheless, 18.9% of the kindergartens exceeded the 100.0 Bq/m3 limit set for new constructions. It is advised to improve radon monitoring in kindergartens and consider developing a national standard for maximum permissible radon levels in such facilities.
RESUMEN
The correlation between socio-economic status (SES) and bone-related diseases garners increasing attention, prompting a bidirectional Mendelian randomization (MR) analysis in this study. Genetic data on SES indicators (average total household income before tax, years of schooling completed, and Townsend Deprivation Index at recruitment), femoral neck bone mineral density (FN-BMD), heel bone mineral density (eBMD), osteoporosis, and five different sites of fractures (spine, femur, lower leg-ankle, foot, and wrist-hand fractures) were derived from genome-wide association summary statistics of European ancestry. The inverse variance weighted method was employed to obtain the causal estimates, complemented by alternative MR techniques, including MR-Egger, weighted median, and MR-pleiotropy residual sum and outlier (MR-PRESSO). Furthermore, sensitivity analyses and multivariable MR were performed to enhance the robustness of our findings. Higher educational attainment exhibited associations with increased eBMD (ß: .06, 95% confidence interval [CI]: 0.01-0.10, P = 7.24 × 10-3), and reduced risks of osteoporosis (OR: 0.78, 95% CI: 0.65-0.94, P = 8.49 × 10-3), spine fracture (OR: 0.76, 95% CI: 0.66-0.88, P = 2.94 × 10-4), femur fracture (OR: 0.78, 95% CI: 0.67-0.91, P = 1.33 × 10-3), lower leg-ankle fracture (OR: 0.79, 95% CI: 0.70-0.88, P = 2.05 × 10-5), foot fracture (OR: 0.78, 95% CI: 0.66-0.93, P = 5.92 × 10-3), and wrist-hand fracture (OR: 0.83, 95% CI: 0.73-0.95, P = 7.15 × 10-3). Material deprivation appeared to increase the risk of spine fracture (OR: 2.63, 95% CI: 1.43-4.85, P = 1.91 × 10-3). A higher FN-BMD level positively affected increased household income (ß: .03, 95% CI: 0.01-0.04, P = 6.78 × 10-3). All these estimates were adjusted for body mass index, type 2 diabetes, smoking initiation, and frequency of alcohol intake. The MR analyses show that higher educational levels is associated with higher eBMD, reduced risk of osteoporosis and fractures, while material deprivation is positively related to spine fracture. Enhanced FN-BMD correlates with increased household income. These findings provide valuable insights for health guideline formulation and policy development.
We conducted stratified analyses to explore the causal links between socio-economic status and osteoporosis and various fractures and observed that education significantly reduced the risk of osteoporosis and lower eBMD. It also lowered the risks of fractures of spine, femur, lower leg-ankle, foot, and wrist-hand, while material deprivation exhibited positive associations with spine fracture risk. Bidirectional MR analysis showed that an elevated score of FN-BMD was associated with a higher income level. Our study shows the importance of conducting routine BMD estimations and osteoporosis screening, to enhance knowledge and awareness among individuals to promote bone health and prevent fractures.
Asunto(s)
Fracturas Óseas , Análisis de la Aleatorización Mendeliana , Osteoporosis , Clase Social , Humanos , Osteoporosis/genética , Osteoporosis/epidemiología , Femenino , Masculino , Fracturas Óseas/genética , Fracturas Óseas/epidemiología , Población Blanca/genética , Densidad Ósea/genética , Persona de Mediana Edad , Europa (Continente)/epidemiología , Estudio de Asociación del Genoma CompletoRESUMEN
Partial cystectomy procedures for urinary bladder-related dysfunction involve long recovery periods, during which urodynamic studies (UDS) intermittently assess lower urinary tract function. However, UDS are not patient-friendly, they exhibit user-to-user variability, and they amount to snapshots in time, limiting the ability to collect continuous, longitudinal data. These procedures also pose the risk of catheter-associated urinary tract infections, which can progress to ascending pyelonephritis due to prolonged lower tract manipulation in high-risk patients. Here, we introduce a fully bladder-implantable platform that allows for continuous, real-time measurements of changes in mechanical strain associated with bladder filling and emptying via wireless telemetry, including a wireless bioresorbable strain gauge validated in a benchtop partial cystectomy model. We demonstrate that this system can reproducibly measure real-time changes in a rodent model up to 30 d postimplantation with minimal foreign body response. Studies in a nonhuman primate partial cystectomy model demonstrate concordance of pressure measurements up to 8 wk compared with traditional UDS. These results suggest that our system can be used as a suitable alternative to UDS for long-term postoperative bladder recovery monitoring.
Asunto(s)
Vejiga Urinaria , Infecciones Urinarias , Animales , Humanos , Vejiga Urinaria/cirugía , Urodinámica/fisiología , Prótesis e Implantes , CistectomíaRESUMEN
Comprehensive, continuous quantitative monitoring of intricately orchestrated physiological processes and behavioral states in living organisms can yield essential data for elucidating the function of neural circuits under healthy and diseased conditions, for defining the effects of potential drugs and treatments, and for tracking disease progression and recovery. Here, we report a wireless, battery-free implantable device and a set of associated algorithms that enable continuous, multiparametric physio-behavioral monitoring in freely behaving small animals and interacting groups. Through advanced analytics approaches applied to mechano-acoustic signals of diverse body processes, the device yields heart rate, respiratory rate, physical activity, temperature, and behavioral states. Demonstrations in pharmacological, locomotor, and acute and social stress tests and in optogenetic studies offer unique insights into the coordination of physio-behavioral characteristics associated with healthy and perturbed states. This technology has broad utility in neuroscience, physiology, behavior, and other areas that rely on studies of freely moving, small animal models.
Asunto(s)
Conducta Animal , Optogenética , Tecnología Inalámbrica , Animales , Conducta Animal/fisiología , Optogenética/métodos , Ratones , Frecuencia Cardíaca/fisiología , Masculino , Prótesis e Implantes , Frecuencia Respiratoria/fisiología , Monitoreo Fisiológico/métodos , Monitoreo Fisiológico/instrumentación , AlgoritmosRESUMEN
Monitoring homeostasis is an essential aspect of obtaining pathophysiological insights for treating patients. Accurate, timely assessments of homeostatic dysregulation in deep tissues typically require expensive imaging techniques or invasive biopsies. We introduce a bioresorbable shape-adaptive materials structure that enables real-time monitoring of deep-tissue homeostasis using conventional ultrasound instruments. Collections of small bioresorbable metal disks distributed within thin, pH-responsive hydrogels, deployed by surgical implantation or syringe injection, allow ultrasound-based measurements of spatiotemporal changes in pH for early assessments of anastomotic leaks after gastrointestinal surgeries, and their bioresorption after a recovery period eliminates the need for surgical extraction. Demonstrations in small and large animal models illustrate capabilities in monitoring leakage from the small intestine, the stomach, and the pancreas.
Asunto(s)
Implantes Absorbibles , Fuga Anastomótica , Tracto Gastrointestinal , Ultrasonido , Animales , Humanos , Homeostasis , Estómago , Tracto Gastrointestinal/cirugía , Fuga Anastomótica/diagnóstico por imagen , Modelos AnimalesRESUMEN
Acute kidney injury (AKI) is a heterogeneous, high-mortality clinical syndrome with diverse pathogenesis and prognosis, but it lacks the effective therapy clinically. Its pathogenesis is associated with production of reactive oxygen/nitrogen species and infiltration of inflammatory cells. To overcome these pathogenic factors and improve the therapeutic efficiency, we synthesized triptolide-loaded mesoscale polydopamine melanin-mimetic nanoparticles (MeNP4TP) as the antioxidant plus anti-inflammatory therapeutic platform to synergistically scavenge reactive oxygen/nitrogen species (RONS), inhibit the activity of macrophages and dendritic cells, and generate Treg cells for AKI therapy. It was demonstrated that mesoscale size was beneficial for MeNP4TP to specifically accumulate at renal tubule cells, and MeNP4TP could significantly attenuate oxidative stress, reduce proinflammatory immune cells in renal, and repair renal function in cisplatin-induced AKI mouse model. MeNP4TP might be a potential candidate to inhibit oxidative damages and inflammatory events in AKI.
RESUMEN
OBJECTIVE: Fibroblast activation protein α (FAP) is expressed in normal adipose tissue and related to some pleiotropic metabolic regulators. However, the exact role and mechanism of FAP in obesity and related metabolic disorders are not well understood. METHODS: FAP knockout mice were fed a normal diet or a high-fat diet (HFD) for 12 weeks. FAP knockout mice or wild-type mice treated with an FAP inhibitor were subjected to cold stress for 5 days. RESULTS: FAP deficiency protected mice against HFD-induced obesity and obesity-associated metabolic dysfunction, including glucose intolerance, insulin resistance, hyperglycemia, hyperinsulinemia, and hyperlipidemia. Notably, FAP deficiency largely reversed obesity-induced adipose tissue macrophage accumulation and M1-M2 imbalance in white adipose tissue (WAT). Moreover, energy expenditure was significantly higher in FAP-deficient mice fed an HFD. Both FAP deficiency and inhibition increased cold tolerance through enhancing WAT beiging. CONCLUSIONS: This study demonstrated that FAP deficiency protects mice against diet-induced obesity and related metabolic dysfunction. Furthermore, the protective effects are probably mediated via the promotion of WAT beiging and suppression of inflammation.