Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 217
Filtrar
1.
Nutrients ; 16(14)2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39064795

RESUMEN

Vitamin D, a crucial fat-soluble vitamin, is primarily synthesized in the skin upon exposure to ultraviolet radiation and is widely recognized as a bone-associated hormone. However, recent scientific advancements have unveiled its intricate association with gut health. The intestinal barrier serves as a vital component, safeguarding the intestinal milieu and maintaining overall homeostasis. Deficiencies in vitamin D have been implicated in altering the gut microbiome composition, compromising the integrity of the intestinal mucosal barrier, and predisposing individuals to various intestinal pathologies. Vitamin D exerts its regulatory function by binding to vitamin D receptors (VDR) present in immune cells, thereby modulating the production of pro-inflammatory cytokines and influencing the intestinal barrier function. Notably, numerous studies have reported lower serum vitamin D levels among patients suffering from intestinal diseases, including inflammatory bowel disease, irritable bowel syndrome, and celiac disease, highlighting the growing significance of vitamin D in gut health maintenance. This comprehensive review delves into the latest advancements in understanding the mechanistic role of vitamin D in modulating the gut microbiome and intestinal barrier function, emphasizing its pivotal role in immune regulation. Furthermore, we consolidate and present relevant findings pertaining to the therapeutic potential of vitamin D in the management of intestinal diseases.


Asunto(s)
Microbioma Gastrointestinal , Enfermedades Intestinales , Vitamina D , Humanos , Vitamina D/uso terapéutico , Vitamina D/metabolismo , Microbioma Gastrointestinal/fisiología , Microbioma Gastrointestinal/efectos de los fármacos , Deficiencia de Vitamina D/complicaciones , Mucosa Intestinal/metabolismo , Receptores de Calcitriol/metabolismo , Enfermedades Inflamatorias del Intestino , Enfermedad Celíaca , Animales
2.
J Agric Food Chem ; 72(23): 13415-13430, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38824655

RESUMEN

This study aimed to investigate the hypothesis that dietary konjac glucomannan (KGM) could alleviate Salmonella typhimurium-induced colitis by modulating intestinal microbiota. Mice were fed an isocaloric and isofibrous diet supplemented with either 7% KGM or cellulose and were treated with 5 × 108 CFU of S. typhimurium. The results showed that KGM had an average molecular weight of 936 kDa and predominantly consisted of mannose and glucose at a molar ratio of 1:1.22. In vivo studies demonstrated that dietary KGM effectively mitigated colonic lesions, oxidative stress, disruption of tight junction protein 2 and occludin, and the inflammatory response induced by S. typhimurium. Moreover, KGM administration alleviated the dramatic upregulation of toll-like receptor 2 (TLR2) and phosphonuclear factor κB (NF-κB) protein abundance, induced by Salmonella treatment. Notably, dietary KGM restored the reduced Muribaculaceae and Lactobacillus abundance and increased the abundance of Blautia and Salmonella in S. typhimurium-infected mice. Spearman correlation analysis revealed that the gut microbiota improved by KGM contribute to inhibit inflammation and oxidative stress. These results demonstrated the protective effects of dietary KGM against colitis by modulating the gut microbiota and the TLR2-NF-κB signaling pathway in response to Salmonella infection.


Asunto(s)
Colitis , Colon , Microbioma Gastrointestinal , Mananos , FN-kappa B , Salmonella typhimurium , Transducción de Señal , Receptor Toll-Like 2 , Animales , Mananos/administración & dosificación , Microbioma Gastrointestinal/efectos de los fármacos , Ratones , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 2/genética , FN-kappa B/metabolismo , FN-kappa B/genética , Colon/microbiología , Colon/metabolismo , Transducción de Señal/efectos de los fármacos , Colitis/inducido químicamente , Colitis/metabolismo , Colitis/microbiología , Colitis/dietoterapia , Masculino , Humanos , Ratones Endogámicos C57BL , Fibras de la Dieta/farmacología , Bacterias/clasificación , Bacterias/aislamiento & purificación , Bacterias/genética , Bacterias/metabolismo , Bacterias/efectos de los fármacos , Amorphophallus/química
3.
Animals (Basel) ; 14(12)2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38929393

RESUMEN

Poultry managers can better understand the state of poultry through poultry behavior analysis. As one of the key steps in behavior analysis, the accurate estimation of poultry posture is the focus of this research. This study mainly analyzes a top-down pose estimation method of multiple chickens. Therefore, we propose the "multi-chicken pose" (MCP), a pose estimation system for multiple chickens through deep learning. Firstly, we find the position of each chicken from the image via the chicken detector; then, an estimate of the pose of each chicken is made using a pose estimation network, which is based on transfer learning. On this basis, the pixel error (PE), root mean square error (RMSE), and image quantity distribution of key points are analyzed according to the improved chicken keypoint similarity (CKS). The experimental results show that the algorithm scores in different evaluation metrics are a mean average precision (mAP) of 0.652, a mean average recall (mAR) of 0.742, a percentage of correct keypoints (PCKs) of 0.789, and an RMSE of 17.30 pixels. To the best of our knowledge, this is the first time that transfer learning has been used for the pose estimation of multiple chickens as objects. The method can provide a new path for future poultry behavior analysis.

4.
Int J Mol Sci ; 25(12)2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38928362

RESUMEN

The aryl hydrocarbon receptor (AhR) is a transcription factor that regulates the immune system through complicated transcriptional programs. Genistein, an AhR ligand, exhibits anti-inflammatory properties. However, its role in modulating immune responses via the AhR signaling pathway remains unclear. In this study, 360 male Arbor Acre broilers (1-day-old) were fed a basal diet supplemented with 40 or 80 mg/kg genistein and infected with or without Clostridium perfringens (Cp). Our results demonstrated that genistein ameliorated Cp-induced intestinal damage, as reflected by the reduced intestinal lesion scores and improved intestinal morphology and feed-to-gain ratio. Moreover, genistein increased intestinal sIgA, TGF-ß, and IL-10, along with elevated serum IgG, IgA, and lysozyme levels. Genistein improved intestinal AhR and cytochrome P450 family 1 subfamily A member 1 (CYP1A1) protein levels and AhR+ cell numbers in Cp-challenged broilers. The increased number of AhR+CD163+ cells in the jejunum suggested a potential association between genistein-induced AhR activation and anti-inflammatory effects mediated through M2 macrophage polarization. In IL-4-treated RAW264.7 cells, genistein increased the levels of AhR, CYP1A1, CD163, and arginase (Arg)-1 proteins, as well as IL-10 mRNA levels. This increase was attenuated by the AhR antagonist CH223191. In summary, genistein activated the AhR signaling pathway in M2 macrophages, which enhanced the secretion of anti-inflammatory cytokines and attenuated intestinal damage in Cp-infected broilers Cp.


Asunto(s)
Pollos , Enteritis , Genisteína , Macrófagos , Receptores de Hidrocarburo de Aril , Animales , Receptores de Hidrocarburo de Aril/metabolismo , Genisteína/farmacología , Genisteína/uso terapéutico , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Enteritis/tratamiento farmacológico , Enteritis/metabolismo , Masculino , Células RAW 264.7 , Enfermedades de las Aves de Corral/tratamiento farmacológico , Enfermedades de las Aves de Corral/metabolismo , Intestinos/efectos de los fármacos , Intestinos/patología , Clostridium perfringens , Infecciones por Clostridium/tratamiento farmacológico , Necrosis , Activación de Macrófagos/efectos de los fármacos , Inflamación/tratamiento farmacológico , Inflamación/patología , Inflamación/metabolismo , Transducción de Señal/efectos de los fármacos
5.
Int Immunopharmacol ; 134: 112268, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38759371

RESUMEN

Piglets receive far less hydroxyproline (Hyp) from a diet after weaning than they obtained from sow's milk prior to weaning, suggesting that Hyp may play a protective role in preserving intestinal mucosal homeostasis. This study aimed to evaluate the effect of Hyp on intestinal barrier function and its associated gut microbiota and metabolites in early-weaned piglets. Eighty weaned piglets were divided into four groups and fed diets containing different Hyp levels (0 %, 0.5 %, 1 %, or 2 %) for 21 days. Samples, including intestinal contents, tissues, and blood, were collected on day 7 for analysis of microbial composition, intestinal barrier function, and metabolites. We demonstrated that dietary supplementation with 2 % Hyp improved the feed conversion ratio and reduced the incidence of diarrhea in early-weaned piglets compared to the control group. Concurrently, Hyp enhanced intestinal barrier function by facilitating tight junction protein (zonula occludens (ZO)-1 and occludin) expression and mucin production in the jejunal, ileal, and colonic mucosas. It also improved mucosal immunity (by increasing the amount of secretory IgA (sIgA) and the ratio of CD4+/CD8+ T lymphocytes and decreasing NF-κB phosphorylation) and increased antioxidant capacity (by raising total antioxidant capacity (T-AOC) and glutathione levels) in the intestinal mucosa. In addition, Hyp supplementation resulted in an increase in the levels of glycine, glutathione, and glycine-conjugated bile acids, while decreasing the concentrations of cortisol and methionine sulfoxide in plasma. Intriguingly, piglets fed diet containing Hyp exhibited a remarkable increase in the abundance of probiotic Enterococcus faecium within their colonic contents. This elevation occurred alongside an attenuation of pro-inflammatory responses and an enhancement in intestinal barrier integrity. Further, these changes were accompanied by a rise in anti-inflammatory metabolites, specifically glycochenodeoxycholic acid and guanosine, along with a suppression of pro-inflammatory lipid peroxidation products, including (12Z)-9,10-dihydroxyoctadec-12-enoic acid (9,10-DHOME) and 13-L-hydroperoxylinoleic acid (13(S)-HPODE). In summary, Hyp holds the capacity to enhance the intestinal barrier function in weaned piglets; this effect is correlated with changes in the gut microbiota and metabolites. Our findings provide novel insights into the role of Hyp in maintaining gut homeostasis, highlighting its potential as a dietary supplement for promoting intestinal health in early-weaned piglets.


Asunto(s)
Suplementos Dietéticos , Microbioma Gastrointestinal , Hidroxiprolina , Mucosa Intestinal , Destete , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Porcinos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/inmunología , Mucosa Intestinal/efectos de los fármacos , Hidroxiprolina/metabolismo , Diarrea/veterinaria , Diarrea/inmunología , Inmunidad Mucosa/efectos de los fármacos , Dieta/veterinaria
6.
Anim Nutr ; 17: 144-154, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38766517

RESUMEN

Glutamine, one of the most abundant amino acids in the body, has been shown to exert various beneficial effects in pigs. However, knowledge regarding the role of dietary glutamine in low-protein diet-fed piglets remains scarce. The present study aimed to investigate the effects of different levels of L-glutamine on growth performance, serum biochemistry parameters, redox status, amino acids, and fecal microbiota in low-protein diet-fed piglets. A total of 128 healthy crossbred piglets (Landrace × Yorkshire) were randomly allocated into 4 groups of 4 replicate pens, with 8 piglets per pen. Piglets in the 4 groups were fed with corn and soybean meal-based low-protein diets (crude protein level, 17%) that contained 0%, 1%, 2%, and 3% L-glutamine, respectively, for 28 d. Pigs administered 1% L-glutamine had greater body weight on d 28 and average daily gain (ADG, P < 0.01), whereas a lower feed to gain ratio (F:G) from d 1 to 28 (P < 0.01), compared to the other three groups. Besides, lower body weight on d 14 and 28, ADG, average daily feed intake, and higher F:G from d 15 to 28 and d 1 to 28 were observed in response to 2% and 3% L-glutamine treatments than 0% and 1% L-glutamine treatments (P < 0.01). Moreover, 1% L-glutamine reduced serum glucose, malondialdehyde, hydrogen peroxide concentrations and inhibited aspartate aminotransferase, alanine aminotransferase, myeloperoxidase activities in low-protein diet-fed piglets on d 14, with concomitantly upregulated catalase, total superoxide dismutase activities and glutathione level (P < 0.05). However, dietary 3% L-glutamine enhanced blood urea nitrogen content in pigs on d 14 (P < 0.05). Further investigation revealed that 1% L-glutamine upregulated the serum glutamine, lysine, methionine, tyrosine, and reduced plasma valine content (P < 0.05). Additionally, 1% L-glutamine upregulated the abundance of p_75_a5, Clostridium, Lactobacillus, Prevotellaceae_Prevotella, and Gemmiger in the stool of piglets on d 14, with the Streptococcus level being concomitantly reduced (P < 0.05). Collectively, dietary 1% L-glutamine enhances the growth performance and improves serum physiochemical parameters and antioxidative capacity in low-protein diet-fed piglets at an early age, which are associated with an increased synthesis of glutathione by modulating amino acid levels, and the optimization of gut microbiota.

7.
J Nutr Biochem ; 129: 109635, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38561080

RESUMEN

The effects of excessive fructose intake on the development and progression of metabolic disorders have received widespread attention. However, the deleterious effects of fructose on the development of hepatic metabolic disease in adolescents and its potential mechanisms are not fully understood. In this study, we investigated the effects of isocaloric fructose-rich diets on the liver of adolescent mice. The results showed that fructose-rich diets had no effect on the development of obesity in the adolescent mice, but did induce hepatic lipid accumulation. Besides, we found that fructose-rich diets promoted hepatic inflammatory responses and oxidative stress in adolescent mice, which may be associated with activation of the NLRP3 inflammasome and inhibition of the Nrf2 pathway. Furthermore, our results showed that fructose-rich diets caused disturbances in hepatic lipid metabolism and bile acid metabolism, as well as endoplasmic reticulum stress and autophagy dysfunction. Finally, we found that the intestinal barrier function was impaired in the mice fed fructose-rich diets. In conclusion, our study demonstrates that dietary high fructose induces hepatic metabolic disorders in adolescent mice. These findings provide a theoretical foundation for fully understanding the effects of high fructose intake on the development of hepatic metabolic diseases during adolescence.


Asunto(s)
Autofagia , Ácidos y Sales Biliares , Fructosa , Metabolismo de los Lípidos , Hígado , Ratones Endogámicos C57BL , Estrés Oxidativo , Animales , Fructosa/efectos adversos , Ácidos y Sales Biliares/metabolismo , Masculino , Hígado/metabolismo , Hígado/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Ratones , Hígado Graso/metabolismo , Hígado Graso/etiología , Estrés del Retículo Endoplásmico/efectos de los fármacos , Factor 2 Relacionado con NF-E2/metabolismo , Inflamasomas/metabolismo
8.
Sci Total Environ ; 928: 171711, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38494025

RESUMEN

Chlorpyrifos (CHP) is an inexpensive highly effective organophosphate insecticide used worldwide. The unguided and excessive use of CHP by farmers has led to its significant accumulation in crops as well as contamination of water sources, causing health problems for humans and animals. Therefore, this study evaluated the toxicological effects of exposure to the environmental pollutant CHP at low, medium, and high (2.5, 5, and 10 mg·kg-1 BW) levels on rat liver by examining antioxidant levels, inflammation, and apoptosis based on the no observed adverse effect levels (NOAEL) (1 mg·kg-1 BW) and the CHP dose that does not cause any visual symptoms (5 mg·kg-1 BW). Furthermore, the involvement of the JAK/STAT and MAPK pathways in CHP-induced toxic effects was identified. The relationship between the expression levels of key proteins (p-JAK/JAK, p-STAT/STAT, p-JNK/JNK, p-P38/P38, and p-ERK/ERK) in the pathways and changes in the expression of markers associated with inflammation [inflammatory factors (IL-1ß, IL-6, IL-10, TNF-α), chemokines (GCLC and GCLM), and inflammatory signaling pathways (NF-кB, TLR2, TLR4, NLRP3, ASC, MyD88, IFN-γ, and iNOS)] and apoptosis [Bad, Bax, Bcl-2, Caspase3, Caspase9, and the cleavage substrate of Caspase PARP1] were also determined. The results suggest that CHP exposure disrupts liver function and activates the JAK/STAT and MAPK pathways via oxidative stress, exacerbating inflammation and apoptosis. Meanwhile, the JAK/STAT and MAPK pathways are involved in CHP-induced hepatotoxicity. These findings provide a novel direction for effective prevention and amelioration of health problems caused by CHP abuse in agriculture and households.


Asunto(s)
Cloropirifos , Contaminantes Ambientales , Insecticidas , Quinasas Janus , Hígado , Sistema de Señalización de MAP Quinasas , Cloropirifos/toxicidad , Animales , Ratas , Hígado/efectos de los fármacos , Quinasas Janus/metabolismo , Contaminantes Ambientales/toxicidad , Insecticidas/toxicidad , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Factores de Transcripción STAT/metabolismo , Masculino , Apoptosis/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
9.
Anim Microbiome ; 6(1): 10, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38444038

RESUMEN

BACKGROUND: Intensive swine breeding industry generates a complex environment where several microbial interactions occur and which constitutes a challenge for biosafety. Ad libitum feeding strategies and low levels of management contribute to residual and wasted feed for lactating sows, which provides a source of nutrients and microbial source for houseflies in warm climates. Due to the absence of the all-in/all-out system, the coexistence of sows of two production stages including gestating and lactating sows in the farrowing barn may have potential negative impacts. In this research, we evaluated the effects of lactating sow leftover on the environmental microbiota of the farrowing barn and the contribution of microbial environments to the gestating sow fecal bacterial structure with a 30-day-long treatment of timely removing lactating residual feed. RESULTS: Houseflies in the farrowing barn mediate the transmission of microorganisms from lactating sow leftover to multiple regions. Leuconostoc, Weissella, Lactobacillus and Pediococcus from the leftover which can produce exopolysaccharides, are more capable of environmental transmission than pathogenic microorganisms including Staphylococcus and Streptococcus and utilize houseflies to achieve spread in environmental regions of the farrowing barn. Leftover removal treatment blocked the microbial transmission chain mediated by houseflies, downregulated the relative abundance of pathogenic bacteria including Escherichia-Shigella and Streptococcus among houseflies, environmental regions and fecal bacteria of gestating sows in the farrowing barn and effectively attenuate the increment of Weissella and RF39 relative abundance in gestating sow feces due to the presence of lactating sows. CONCLUSIONS: Lactating sow leftover is a non-negligible microbial contributor of environment in farrowing barn whose transmission is mediated by houseflies. A 30-day-long treatment of removing lactating sow residual feed cause significant changes in the microbial structure of multiple environmental regions within the farrowing barn via altering the microbiota carried by houseflies. Meanwhile, lactating sow leftover affect the fecal microbial structure of gestating sows in the same farrowing barn, while removal of lactating sow leftover alleviates the contribution of microbial transmission.

10.
Chemistry ; 30(8): e202303519, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38018776

RESUMEN

Three unusual ajmaline-macroline type bisindole alkaloids, alsmaphylines A-C, together with their postulated biogenetic precursors, were isolated from the stem barks and leaves of Alstonia macrophylla via the building blocks-based molecular network (BBMN) strategy. Alsmaphyline A represents a rare ajmaline-macroline type bisindole alkaloid with an S-shape polycyclic ring system. Alsmaphylines B and C are two novel ajmaline-macroline type bisindole alkaloids with N-1-C-21' linkages, and the former possesses an unconventional stacked conformation due to the presence of intramolecular noncovalent interactions. The chemical structures including absolute configurations of alsmaphylines A-C were established by comprehensive spectroscopic analyses, electronic circular dichroism (ECD) calculations, and single-crystal X-ray crystallography. In addition, a plausible biosynthetic pathway of these bisindole alkaloids as well as their ability to promote the protein synthesis on HT22 cells were discussed.


Asunto(s)
Alcaloides , Alstonia , Oxindoles , Alstonia/química , Ajmalina , Alcaloides Indólicos/química , Estructura Molecular , Alcaloides/química
11.
Microb Pathog ; 185: 106436, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37913827

RESUMEN

Metabolic and autoimmune disorders have long represented challenging health problems because of their growing prevalence in companion animals. The gut microbiome, made up of trillions of microorganisms, is implicated in multiple physiological and pathological processes. Similar to human beings, the complicated microbiome harbored in the gut of canines and felines emerges as a key factor determining a wide range of normal and disease conditions. Evidence accumulated from recent findings on canine and feline research uncovered that the gut microbiome is actively involved in host metabolism and immunity. Notably, the composition, abundance, activity, and metabolites of the gut microbiome are all elements that shape clinical outcomes concerning metabolism and immune function. This review highlights the implications of the gut microbiome for metabolic disorders (obesity, diabetes, and hepatic lipidosis) and autoimmune diseases (inflammatory bowel disease, osteoarthritis, asthma, and myasthenia gravis) in canine and feline animals, providing novel strategies and therapeutic targets for the prevention and treatment of pet diseases.


Asunto(s)
Enfermedades Autoinmunes , Enfermedades de los Gatos , Diabetes Mellitus , Enfermedades de los Perros , Microbioma Gastrointestinal , Gatos , Animales , Perros , Humanos , Microbioma Gastrointestinal/fisiología , Enfermedades Autoinmunes/veterinaria
12.
J Pharm Anal ; 13(10): 1183-1194, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38024861

RESUMEN

Muramidase-released protein (MRP) is now being recognized as a critical indicator of the virulence and pathogenicity of Streptococcus suis (S. suis). However, the identification of viable therapeutics for S. suis infection was hindered by the absence of an explicit mechanism for MRP-actuated inflammation. Dihydroartemisinin (DhA) is an artemisinin derivative with potential anti-inflammatory activity. The modulatory effect of DhA on the inflammatory response mediated by the virulence factor MRP remains obscure. This research aimed to identify the signaling mechanism by which MRP triggers the innate immune response in mouse spleen and cultured macrophages. With the candidate mechanism in mind, we investigated DhA for its ability to dampen the pro-inflammatory response induced by MRP. The innate immune response in mice was drastically triggered by MRP, manifesting as splenic and systemic inflammation with splenomegaly, immune cell infiltration, and an elevation in pro-inflammatory cytokines. A crucial role for Toll-like receptor 4 (TLR4) in coordinating the MRP-mediated inflammatory response via nuclear factor-kappa B (NF-κB) activation was revealed by TLR4 blockade. In addition, NF-κB-dependent transducer and activator of transcription 3 (STAT3) and mitogen-activated protein kinases (MAPKs) activation was required for the inflammatory signal transduction engendered by MRP. Intriguingly, we observed an alleviation effect of DhA on the MRP-induced immune response, which referred to the suppression of TLR4-mediated actuation of NF-κB-STAT3/MAPK cascades. The inflammatory response elicited by MRP is relevant to TLR4-dependent NF-κB activation, followed by an increase in the activity of STAT3 or MAPKs. DhA mitigates the inflammation process induced by MRP via blocking the TLR4 cascade, highlighting the therapeutic potential of DhA in targeting S. suis infection diseases.

13.
Microorganisms ; 11(10)2023 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-37894110

RESUMEN

Pets (mostly domestic dogs and cats) play an important role in the daily lives of humans and their health has attracted growing attention from pet owners. The intestinal microbiota, a complex microbial community with barrier-protective, nutritional, metabolic, and immunological functions, is integral to host health. Dysbiosis has been related to a variety of diseases in humans and animals. Probiotics have been used in functional foods and dietary supplements to modulate intestinal microbiota and promote host health, which has been introduced in pet dogs and cats in recent years. Various canine- and feline-derived probiotic strains have been isolated and characterized. The administration of probiotics has shown positive effects on the gut health and can alleviate some intestinal diseases and disorders in dogs and cats, although the underlying mechanisms are largely unresolved. In this review, we summarize the current knowledge on the benefits of probiotics and discuss their possible mechanisms in dogs and cats in order to provide new insights for the further development and application of probiotics in pets.

14.
Phytochemistry ; 216: 113884, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37813133

RESUMEN

Six undescribed compounds, uvarirufols D and E, (+)-uvarigranol B, (-)-uvarigranol E, 6-acetoxy-5-hydroxy-7-methoxyflavanone and cherrevenaphthalene D, along with twelve known compounds, including polyoxygenated cyclohexenes, flavonoids, and lignans, were isolated from the methanol extract of Uvaria rufa stems. Their structures were elucidated by spectroscopic analyses and the absolute configurations were determined using electronic circular dichroism. Several isolates were evaluated for cytotoxic, antitubercular and anti-inflammatory potentials. (-)-6-Acetylzeylenol showed moderate inhibitory activity against Mycobacterium tuberculosis, with MIC value of 47.10 µg/mL. Cherrevenaphthalene D exhibited weak antimycobacterial activity and potent inhibitory effect on lipopolysaccharide-induced nitric oxide (NO) production in RAW 264.7 cells (EC50 = 8.54 µM). 8-Hydroxy-5,7-dimethoxyflavanone displayed moderate level of NO inhibition (EC50 = 43.62 µM) with little cytotoxicity. The polyoxygenated cyclohexenes and lignans were inactive against HCT 116 and 22Rv1 cancer cells (IC50 > 100 µM).


Asunto(s)
Lignanos , Uvaria , Uvaria/química , Estructura Molecular , Ciclohexenos/farmacología , Ciclohexenos/química , Lignanos/farmacología
15.
Food Chem Toxicol ; 182: 114100, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37838214

RESUMEN

The role of dietary pectin on microbial-induced colitis, oxidative status, barrier function, and microbial composition, as well as the underlying mechanisms, is scarce. In this study, we aimed to investigate whether dietary pectin alleviates Salmonella typhimurium-induced colitis in mice. Male C57BL/6J mice fed an isocaloric and isofibrous diet with 7% pectin or cellulose were administered sterile water or Salmonella typhimurium to induce colitis, which is equal to a human food dose of 0.57% (5.68 g/kg). Dietary pectin alleviated Salmonella typhimurium-induced colitis and oxidative stress as shown by the reduced disease activity index score, decreased colon shortening and histological damage score, colonic hydrogen peroxide, malondialdehyde concentrations, and relative mRNA expressions of coenzyme Q-binding protein COQ10 homologue B (Coq10b), Ccl-2, Ccl-3, Ccl-8, Tnf-α, Il-1ß, Ifn-γ, Ifn-ß, and serum TNF-α protein level. Moreover, pectin administration ameliorated the downregulated colonic abundances of occludin, zonula occludens-1, zonula occludens-2, and the upregulated abundances of TLR2 and p-NF-κB in Salmonella-infected mice. Additionally, 16S rRNA analysis demonstrated that pectin altered the microbial beta-diversity and reduced Salmonella levels. Collectively, pectin ameliorated Salmonella typhimurium-induced colitis, oxidative stress, and tight junction, which may be related to the inactivation of TLR2-NF-κB signalling and reduced abundance of Salmonella.


Asunto(s)
Colitis , Microbioma Gastrointestinal , Humanos , Ratones , Masculino , Animales , FN-kappa B/genética , FN-kappa B/metabolismo , Salmonella typhimurium/genética , Receptor Toll-Like 2/genética , Factor de Necrosis Tumoral alfa/metabolismo , Pectinas/farmacología , ARN Ribosómico 16S , Ratones Endogámicos C57BL , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/metabolismo , Colon/metabolismo , Dieta , Sulfato de Dextran , Modelos Animales de Enfermedad
16.
Antioxidants (Basel) ; 12(9)2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37760076

RESUMEN

This study aimed to investigate the effects of dietary tannic acid (TAN) on the gas production, growth performance, antioxidant capacity, rumen microflora, and fermentation function of beef cattle through in vitro and in vivo experiments. TAN was evaluated at 0.15% (dry matter basis, DM) in the in vitro experiment and 0.20% (DM basis) in the animal feeding experiment. The in vitro results revealed that compared with control (CON, basal diet without TAN), the addition of TAN significantly increased the cumulative gas production and asymptotic gas production per 0.20 g dry matter substrate (p < 0.01), with a tendency to reduce methane concentration after 96 h of fermentation (p = 0.10). Furthermore, TAN supplementation significantly suppressed the relative abundance of Methanosphaera and Methanobacteriaceae in the fermentation fluid (LDA > 2.50, p < 0.05). The in vivo experiment showed that compared with CON, the dietary TAN significantly improved average daily gain (+0.15 kg/d), dressing percent (+1.30%), net meat percentage (+1.60%), and serum glucose concentration (+23.35%) of beef cattle (p < 0.05), while it also significantly reduced hepatic malondialdehyde contents by 25.69% (p = 0.02). Moreover, the TAN group showed significantly higher alpha diversity (p < 0.05) and increased relative abundance of Ruminococcus and Saccharomonas (LDA > 2.50, p < 0.05), while the relative abundance of Prevotellaceae in rumen microbial community was significantly decreased (p < 0.05) as compared to that of the CON group. In conclusion, the dietary supplementation of TAN could improve the growth and slaughter performance and health status of beef cattle, and these favorable effects might be attributed to its ability to alleviate liver lipid peroxidation, enhance glucose metabolism, and promote a balanced rumen microbiota for optimal fermentation.

17.
Metabolites ; 13(9)2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37755275

RESUMEN

This study explored the effects of drinking heated water in the cold seasons on the serum metabolism, rumen microbial fermentation, and metabolome of beef cattle. Twelve fattening cattle (642 ± 14.6 kg) aged 21 to 22 months were randomly and equally divided into two groups based on body weight: one receiving room-temperature water (RTW; average 4.39 ± 2.55 °C) and the other heated water (HW; average 26.3 ± 1.70 °C). The HW group displayed a significant decrease in serum glucose (p < 0.01) and non-esterified fatty acid (p < 0.01), but increases in insulin (p = 0.04) and high-density lipoprotein (p = 0.03). The rumen fermentation parameters of the HW group showed substantial elevations in acetate (p = 0.04), propionate (p < 0.01), isobutyrate (p = 0.02), and total volatile fatty acids (p < 0.01). Distinct bacterial composition differences were found between RTW and HW at the operational taxonomic unit (OTU) level (R = 0.20, p = 0.01). Compared to RTW, the HW mainly had a higher relative abundance of Firmicutes (p = 0.07) at the phylum level and had a lower abundance of Prevotella (p < 0.01), norank_f_p-215-o5 (p = 0.03), and a higher abundance of NK4A214_group (p = 0.01) and Lachnospiraceae_NK3A20_group (p = 0.05) at the genus level. In addition, NK4A214_group and Lachnospiraceae_NK3A20_group were significantly positively correlated with the rumen propionate and isovalerate (r > 0.63, p < 0.05). Prevotella was negatively correlated with rumen propionate and total volatile fatty acids (r = -0.61, p < 0.05). In terms of the main differential metabolites, compared to the RTW group, the expression of Cynaroside A, N-acetyl-L-glutamic acid, N-acetyl-L-glutamate-5-semialdehyde, and Pantothenic acid was significantly upregulated in HW. The differentially regulated metabolic pathways were primarily enriched in nitrogen metabolism, arginine biosynthesis, and linoleic acid metabolism. Prevotella was significantly positively correlated with suberic acid and [6]-Gingerdiol 3,5-diacetate (r > 0.59, p < 0.05) and was negatively correlated with Pantothenic acid and isoleucyl-aspartate (r < -0.65, p < 0.05). NK4A214_group was positively correlated with L-Methionine and glycylproline (r > 0.57, p < 0.05). Overall, our research demonstrates the important relationship between drinking water temperature and metabolic and physiological responses in beef cattle. Heating drinking water during cold seasons plays a pivotal role in modulating internal energy processes. These findings underscore the potential benefits of using heated water as a strategic approach to optimize energy utilization in beef cattle during the cold seasons.

18.
Chem Biol Interact ; 384: 110695, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37659622

RESUMEN

3-Acetyldeoxynivalenol (3-Ac-DON), an acetylated form of deoxynivalenol, is widely present in mycotoxin-contaminated food, feed as well as in other natural sources. Ingestion of 3-Ac-DON may result in intestinal dysfunction, leading to gut diseases in humans and animals. Nevertheless, the molecular mechanism of 3-Ac-DON in intestinal epithelial cytotoxicity remains unclear. In this study, intestinal porcine epithelial cell line 1 (IPEC-1) cells were treated with different concentrations of 3-Ac-DON for 12 h or 24 h, respectively. The results showed that 3-Ac-DON caused decreased cell viability, cell cycle arrest in G1 phase and depolarization of mitochondrial membrane potential. Western blotting analysis showed that 3-Ac-DON significantly decreased the expression of tight junction proteins, inhibited autophagy and activated endoplasmic reticulum (ER) stress in IPEC-1 cells (P < 0.05). Further investigation demonstrated that 3-Ac-DON caused apoptosis, ER stress and barrier dysfunction were reversed after co-treatment with the autophagy activator rapamycin (100 nM), indicating that autophagy plays a key role in the process of 3-Ac-DON-induced cell damage. In addition, we demonstrated that 3-Ac-DON inhibits the occurrence of autophagy mediated by mTORC1 protein. In conclusion, our research indicated that the mTORC1 protein and autophagy played a key role in the 3-Ac-DON-induced cytotoxic in IPEC-1 cells, which would provide new therapeutic targets and ideas for 3-Ac-DON-mediated intestinal injury.

19.
Antioxidants (Basel) ; 12(8)2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37627487

RESUMEN

The research aimed to investigate the suitable drinking water temperature in winter and its effect on the growth performance, antioxidant capacity, and rumen fermentation function of beef cattle. A total of 40 beef cattle (640 ± 19.2 kg) were randomly divided into five treatments with eight cattle in each treatment raised in one pen according to initial body weight. Each treatment differed only in the temperature of drinking water, including the room-temperature water and four different heat water groups named RTW, HW_1, HW_2, HW_3, and HW_4. The measured water temperatures were 4.39 ± 2.546 °C, 10.6 ± 1.29 °C, 18.6 ± 1.52 °C, 26.3 ± 1.70 °C, and 32.5 ± 2.62 °C, respectively. The average daily gain (ADG) showed a significant linear increase during d 0 to 60 and a quadratic increase during d 31 to 60 with rising water temperature (p < 0.05), and the highest ADG of 1.1911 kg/d was calculated at a water temperature of 23.98 °C (R2 = 0.898). The average rectal temperature on d 30 (p = 0.01) and neutral detergent fiber digestibility (p < 0.01) increased linearly with increasing water temperature. Additionally, HW_2 reduced serum triiodothyronine, thyroxine, and malondialdehyde (p < 0.05), and increased serum total antioxidant capacity (p < 0.05) compared with RTW. Compared with HW_2, RTW had unfavorable effects on ruminal propionate, total volatile fatty acids, and cellulase concentrations (p < 0.05), and lower relative mRNA expression levels of claudin-4 (p < 0.01), occludin (p = 0.02), and zonula occludens-1 (p = 0.01) in the ruminal epithelium. Furthermore, RTW had a higher abundance of Prevotella (p = 0.04), Succinivibrionaceae_UCG-002 (p = 0.03), and Lachnospiraceae_UCG-004 (p = 0.03), and a lower abundance of Bifidobacteriaceae (p < 0.01) and Marinilabiliaceae (p = 0.05) in rumen compared to HW_2. Taken together, heated drinking water in cold climates could positively impact the growth performance, nutrient digestibility, antioxidant capacity, and rumen fermentation function of beef cattle. The optimal water temperature for maximizing ADG was calculated to be 23.98 °C under our conditions. Ruminal propionate and its producing bacteria including Prevotella, Succinivibrionaceae, and Lachnospiraceae might be important regulators of rumen fermentation of beef cattle drinking RTW under cold conditions.

20.
Microorganisms ; 11(8)2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37630652

RESUMEN

Yaks live in the harsh environment of the Qinghai-Tibet Plateau, and the cold climate causes lower growth efficiency. The aim of this experiment was to explore the effects of drinking warm water on the growth performance in yak calves and investigate the underlying physiological mechanisms. A total of 24 Datong yak calves were selected and randomly assigned into the cold water group (group C, water temperature around 0-10 °C without any heating; 58.03 ± 3.111 kg) and the warm water group (group W, water constantly heated at 2 °C; 59.62 ± 2.771 kg). After the 60-day experiment, body weight was measured, and rumen fluid and blood serum samples were collected for analysis. The results show that the body weight and average daily gain of yaks that drank warm water were higher compared to those that drank cold water (p < 0.05). The acetic, propionic, isobutyric, valeric, and isovaleric acid concentrations were higher in group W than in group C (p < 0.05). Additionally, warm water changed the ruminal microbes at different levels. At the phylum level, the relative abundance of Tenericutes, Kiritimatiellaeota, and Elusimicrobiota was higher in group C (p < 0.05). At the genus level, three genera were increased by warm water, including Ruminococcoides and Eubacteriales Family XIII. Incertae Sedis, and 12 genera were decreased, including Ruminococcus (p < 0.05). At the species level, unclassified Prevotellaceae and Ruminococcoides bili were increased by warm water compared to cold water (p < 0.05). According to the metabolomics results, metabolites, including valine, isoleucine, PC (15:0/22:2(13Z,16Z)), and LysoPC (18:0/0:0), were increased in the warm water group compared to the cold water group (p < 0.05), and were enriched in glycerophospholipid and amino acid metabolism pathways. This study analyzed the differences in ruminal microbes and metabolomes of yak calves provided with water at different temperatures and revealed the potential mechanism for better performance promoted by warm drinking water.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...