Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Neurosci Res ; 89(3): 365-72, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21259323

RESUMEN

Mice that are deficient in classical major histocompatibility complex class I (MHCI) have abnormalities in synaptic plasticity and neurodevelopment and have more extensive loss of synapses and reduced axon regeneration after sciatic nerve transection, suggesting that MHCI participates in maintaining synapses and axon regeneration. Little is known about the biological consequences of up-regulating MHCI's expression on neurons. To understand MHCI's neurobiological activity better, and in particular its role in neurorepair after injury, we have studied neurorepair in a transgenic mouse model in which classical MHCI expression is up-regulated only on neurons. Using a well-established spinal cord injury (SCI) model, we observed that transgenic mice with elevated neuronal MHCI expression had significantly better recovery of locomotor abilities after SCI than wild-type mice. Although previous studies have implicated inflammation as both deleterious and beneficial for recovery after SCI, our results point directly to enhanced neuronal MHCI expression as a beneficial factor for promoting recovery of locomotor function after SCI.


Asunto(s)
Regulación de la Expresión Génica/genética , Antígenos de Histocompatibilidad Clase I/genética , Locomoción/fisiología , Recuperación de la Función/fisiología , Traumatismos de la Médula Espinal/fisiopatología , Análisis de Varianza , Animales , Modelos Animales de Enfermedad , Prueba de Esfuerzo/métodos , Lateralidad Funcional , Locomoción/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/metabolismo , Fosfopiruvato Hidratasa/genética , Recuperación de la Función/genética , Traumatismos de la Médula Espinal/patología
2.
J Neuroimmunol ; 232(1-2): 8-16, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20950866

RESUMEN

Mice deficient in classical major histocompatibility complex class I (MHCI) have aberrations in neurodevelopment. The consequences of upregulated neuronal MHCI expression have not been examined. We found that transgenic C57Bl/6 mice that are engineered to express higher levels of self-D(b) on their CNS neurons have alterations in their hippocampal morphology and retinogeniculate projections, as well as impaired neurorepair responses. Thus, enhanced neuronal classical MHCI expression can lead to aberrations in neural circuitry and neurorepair. These findings complement a growing body of knowledge concerning the neurobiological activities of MHCI and may have potential clinical relevance.


Asunto(s)
Antígenos de Histocompatibilidad Clase I/metabolismo , Regeneración Nerviosa/fisiología , Neurogénesis/fisiología , Neuronas/metabolismo , Acetilcolinesterasa/metabolismo , Animales , Potenciales Postsinápticos Excitadores/fisiología , Hipocampo/inmunología , Hipocampo/metabolismo , Hipocampo/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/inmunología , Neuronas/patología , Técnicas de Cultivo de Órganos , Transmisión Sináptica/fisiología
3.
Immunol Lett ; 135(1-2): 118-23, 2011 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-20974178

RESUMEN

Studies of mice deficient in classical major histocompatability complex class I (MHCI) revealed that MHCI plays an important role in neurodevelopment in the central nervous system. We previously studied the effects of recombinant MHCI molecules on wildtype retina explants and observed that MHCI can inhibit retina neurite outgrowth, with self-MHCI molecules having greater inhibitory effect than non-self MHCI molecules. Here, we examined classical MHCI's effects on axon outgrowth from neurons of the peripheral nervous system (PNS). We used the embryonic dorsal root ganglia (DRG) explant model since their neurons express MHCI and because DRG explants have been widely used to assess the effects of molecules on axonal outgrowth from PNS neurons. We observed that picomolar levels of a recombinant self-MHCI molecule, but not non-self MHCI molecules, inhibited axon outgrowth from DRG explants. This differential sensitivity to self- vs. non-self MHCI suggests that early in development, self-MHCI may "educate" PNS neurons to express appropriate MHCI receptors, as occurs during natural killer cell development. Furthermore, we observed that a MHCI tetramer stained embryonic DRG neurons, indicating the expression of classical MHCI receptors. These results suggest that MHCI and MHCI receptors play roles during early stages of PNS development and may provide new targets of therapeutic strategies to promote neuronal outgrowth after PNS injury.


Asunto(s)
Ganglios Espinales/inmunología , Regulación de la Expresión Génica/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Neuritas/inmunología , Traumatismos de los Nervios Periféricos , Nervios Periféricos/inmunología , Animales , Axones/inmunología , Axones/metabolismo , Embrión de Mamíferos/inmunología , Embrión de Mamíferos/metabolismo , Ganglios Espinales/metabolismo , Antígenos de Histocompatibilidad Clase I/biosíntesis , Ratones , Neuritas/metabolismo , Nervios Periféricos/metabolismo
4.
J Immunol ; 184(2): 816-23, 2010 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-20018625

RESUMEN

Studies of mice lacking MHC class I (MHC I)-associated proteins have demonstrated a role for MHC I in neurodevelopment. A central question arising from these observations is whether neuronal recognition of MHC I has specificity for the MHC I allele product and the peptide presented. Using a well-established embryonic retina explant system, we observed that picomolar levels of a recombinant self-MHC I molecule inhibited neurite outgrowth. We then assessed the neurobiological activity of a panel of recombinant soluble MHC Is, consisting of different MHC I heavy chains with a defined self- or nonself-peptide presented, on cultured embryonic retinas from mice with different MHC I haplotypes. We observed that self-MHC I allele products had greater inhibitory neuroactivity than nonself-MHC I molecules, regardless of the nature of the peptide presented, a pattern akin to MHC I recognition by some innate immune system receptors. However, self-MHC I molecules had no effect on retinas from MHC I-deficient mice. These observations suggest that neuronal recognition of MHC I may be coordinated with the inherited MHC I alleles, as occurs in the innate immune system. Consistent with this notion, we show that MHC I and MHC I receptors are coexpressed by precursor cells at the earliest stages of retina development, which could enable such coordination.


Asunto(s)
Alelos , Presentación de Antígeno , Antígenos de Histocompatibilidad Clase I/genética , Neuronas/inmunología , Péptidos/inmunología , Animales , Autoantígenos/inmunología , Células Madre Embrionarias , Inmunidad Innata , Ratones , Neuritas/inmunología , Neuronas/citología , Retina/embriología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...