Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
mSystems ; : e0138523, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38752789

RESUMEN

A dysfunction of human host genes and proteins in coronavirus infectious disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a key factor impacting clinical symptoms and outcomes. Yet, a detailed understanding of human host immune responses is still incomplete. Here, we applied RNA sequencing to 94 samples of COVID-19 patients with and without hematological tumors as well as COVID-19 uninfected non-tumor individuals to obtain a comprehensive transcriptome landscape of both hematological tumor patients and non-tumor individuals. In our analysis, we further accounted for the human-SARS-CoV-2 protein interactome, human protein interactome, and human protein complex subnetworks to understand the mechanisms of SARS-CoV-2 infection and host immune responses. Our data sets enabled us to identify important SARS-CoV-2 (non-)targeted differentially expressed genes and complexes post-SARS-CoV-2 infection in both hematological tumor and non-tumor individuals. We found several unique differentially expressed genes, complexes, and functions/pathways such as blood coagulation (APOE, SERPINE1, SERPINE2, and TFPI), lipoprotein particle remodeling (APOC2, APOE, and CETP), and pro-B cell differentiation (IGHM, VPREB1, and IGLL1) during COVID-19 infection in patients with hematological tumors. In particular, APOE, a gene that is associated with both blood coagulation and lipoprotein particle remodeling, is not only upregulated in hematological tumor patients post-SARS-CoV-2 infection but also significantly expressed in acute dead patients with hematological tumors, providing clues for the design of future therapeutic strategies specifically targeting COVID-19 in patients with hematological tumors. Our data provide a rich resource for understanding the specific pathogenesis of COVID-19 in immunocompromised patients, such as those with hematological malignancies, and developing effective therapeutics for COVID-19. IMPORTANCE: A majority of previous studies focused on the characterization of coronavirus infectious disease 2019 (COVID-19) disease severity in people with normal immunity, while the characterization of COVID-19 in immunocompromised populations is still limited. Our study profiles changes in the transcriptome landscape post-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in hematological tumor patients and non-tumor individuals. Furthermore, our integrative and comparative systems biology analysis of the interactome, complexome, and transcriptome provides new insights into the tumor-specific pathogenesis of COVID-19. Our findings confirm that SARS-CoV-2 potentially tends to target more non-functional host proteins to indirectly affect host immune responses in hematological tumor patients. The identified unique genes, complexes, functions/pathways, and expression patterns post-SARS-CoV-2 infection in patients with hematological tumors increase our understanding of how SARS-CoV-2 manipulates the host molecular mechanism. Our observed differential genes/complexes and clinical indicators of normal/long infection and deceased COVID-19 patients provide clues for understanding the mechanism of COVID-19 progression in hematological tumors. Finally, our study provides an important data resource that supports the increasing value of the application of publicly accessible data sets to public health.

2.
Science ; 384(6698): eadh3707, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38781393

RESUMEN

The molecular pathology of stress-related disorders remains elusive. Our brain multiregion, multiomic study of posttraumatic stress disorder (PTSD) and major depressive disorder (MDD) included the central nucleus of the amygdala, hippocampal dentate gyrus, and medial prefrontal cortex (mPFC). Genes and exons within the mPFC carried most disease signals replicated across two independent cohorts. Pathways pointed to immune function, neuronal and synaptic regulation, and stress hormones. Multiomic factor and gene network analyses provided the underlying genomic structure. Single nucleus RNA sequencing in dorsolateral PFC revealed dysregulated (stress-related) signals in neuronal and non-neuronal cell types. Analyses of brain-blood intersections in >50,000 UK Biobank participants were conducted along with fine-mapping of the results of PTSD and MDD genome-wide association studies to distinguish risk from disease processes. Our data suggest shared and distinct molecular pathology in both disorders and propose potential therapeutic targets and biomarkers.


Asunto(s)
Encéfalo , Trastorno Depresivo Mayor , Sitios Genéticos , Trastornos por Estrés Postraumático , Femenino , Humanos , Masculino , Amígdala del Cerebelo/metabolismo , Biomarcadores/metabolismo , Encéfalo/metabolismo , Trastorno Depresivo Mayor/genética , Redes Reguladoras de Genes , Estudio de Asociación del Genoma Completo , Neuronas/metabolismo , Corteza Prefrontal/metabolismo , Trastornos por Estrés Postraumático/genética , Biología de Sistemas , Análisis de Expresión Génica de una Sola Célula , Mapeo Cromosómico
3.
Genome Biol ; 25(1): 39, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38297326

RESUMEN

Expansions of tandem repeats (TRs) cause approximately 60 monogenic diseases. We expect that the discovery of additional pathogenic repeat expansions will narrow the diagnostic gap in many diseases. A growing number of TR expansions are being identified, and interpreting them is a challenge. We present RExPRT (Repeat EXpansion Pathogenicity pRediction Tool), a machine learning tool for distinguishing pathogenic from benign TR expansions. Our results demonstrate that an ensemble approach classifies TRs with an average precision of 93% and recall of 83%. RExPRT's high precision will be valuable in large-scale discovery studies, which require prioritization of candidate loci for follow-up studies.


Asunto(s)
Aprendizaje Automático , Secuencias Repetidas en Tándem , Virulencia
4.
Brief Bioinform ; 25(2)2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38279649

RESUMEN

The identification of human-herpesvirus protein-protein interactions (PPIs) is an essential and important entry point to understand the mechanisms of viral infection, especially in malignant tumor patients with common herpesvirus infection. While natural language processing (NLP)-based embedding techniques have emerged as powerful approaches, the application of multi-modal embedding feature fusion to predict human-herpesvirus PPIs is still limited. Here, we established a multi-modal embedding feature fusion-based LightGBM method to predict human-herpesvirus PPIs. In particular, we applied document and graph embedding approaches to represent sequence, network and function modal features of human and herpesviral proteins. Training our LightGBM models through our compiled non-rigorous and rigorous benchmarking datasets, we obtained significantly better performance compared to individual-modal features. Furthermore, our model outperformed traditional feature encodings-based machine learning methods and state-of-the-art deep learning-based methods using various benchmarking datasets. In a transfer learning step, we show that our model that was trained on human-herpesvirus PPI dataset without cytomegalovirus data can reliably predict human-cytomegalovirus PPIs, indicating that our method can comprehensively capture multi-modal fusion features of protein interactions across various herpesvirus subtypes. The implementation of our method is available at https://github.com/XiaodiYangpku/MultimodalPPI/.


Asunto(s)
Benchmarking , Citomegalovirus , Humanos , Aprendizaje Automático , Procesamiento de Lenguaje Natural
5.
PNAS Nexus ; 3(1): pgad479, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38274120

RESUMEN

Minor intron-containing genes (MIGs) account for <2% of all human protein-coding genes and are uniquely dependent on the minor spliceosome for proper excision. Despite their low numbers, we surprisingly found a significant enrichment of MIG-encoded proteins (MIG-Ps) in protein-protein interactomes and host factors of positive-sense RNA viruses, including SARS-CoV-1, SARS-CoV-2, MERS coronavirus, and Zika virus. Similarly, we observed a significant enrichment of MIG-Ps in the interactomes and sets of host factors of negative-sense RNA viruses such as Ebola virus, influenza A virus, and the retrovirus HIV-1. We also found an enrichment of MIG-Ps in double-stranded DNA viruses such as Epstein-Barr virus, human papillomavirus, and herpes simplex viruses. In general, MIG-Ps were highly connected and placed in central positions in a network of human-host protein interactions. Moreover, MIG-Ps that interact with viral proteins were enriched with essential genes. We also provide evidence that viral proteins interact with ancestral MIGs that date back to unicellular organisms and are mainly involved in basic cellular functions such as cell cycle, cell division, and signal transduction. Our results suggest that MIG-Ps form a stable, evolutionarily conserved backbone that viruses putatively tap to invade and propagate in human host cells.

6.
Appl Plant Sci ; 11(5): e11549, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37915432

RESUMEN

Premise: Imaging technologies that capture three-dimensional (3D) variation in floral morphology at micro- and nano-resolutions are increasingly accessible. In herkogamous flowers, such as those of Theobroma cacao, structural barriers between anthers and stigmas represent bottlenecks that restrict pollinator size and access to reproductive organs. To study the unresolved pollination biology of cacao, we present a novel application of micro-computed tomography (micro-CT) using floral dimensions to quantify pollinator functional size limits. Methods: We generated micro-CT data sets from field-collected flowers and museum specimens of potential pollinators. To compare floral variation, we used 3D Slicer to place landmarks on the surface models and performed a geometric morphometric (GMM) analysis using geomorph R. We identified the petal side door (an opening between the petal hoods and filament) as the main bottleneck for pollinator access. We compared its mean dimensions with proposed pollinators to identify viable candidates. Results: We identified three levels of likelihood for putative pollinators based on the number of morphological (body) dimensions that fit through the petal side door. We also found floral reward microstructures whose presence and location were previously unclear. Discussion: Using micro-CT and GMM to study the 3D pollination biology of cacao provides new evidence for predicting unknown pollinators. Incorporating geometry and floral rewards will strengthen plant-pollinator trait matching models for cacao and other species.

7.
Res Sq ; 2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37546804

RESUMEN

While RNA secondary structures are critical to regulate alternative splicing of long-range pre-mRNA, the factors that modulate RNA structure and interfere with the recognition of the splice sites are largely unknown. Previously, we identified a small, non-coding microRNA that sufficiently affects stable stem structure formation of Nmnat pre-mRNA to regulate the outcomes of alternative splicing. However, the fundamental question remains whether such microRNA-mediated interference with RNA secondary structures is a global molecular mechanism for regulating mRNA splicing. We designed and refined a bioinformatic pipeline to predict candidate microRNAs that potentially interfere with pre-mRNA stem-loop structures, and experimentally verified splicing predictions of three different long-range pre-mRNAs in the Drosophila model system. Specifically, we observed that microRNAs can either disrupt or stabilize stem-loop structures to influence splicing outcomes. Our study suggests that MicroRNA-Mediated Obstruction of Stem-loop Alternative Splicing (MIMOSAS) is a novel regulatory mechanism for the transcriptome-wide regulation of alternative splicing, increases the repertoire of microRNA function and further indicates cellular complexity of post-transcriptional regulation.

8.
bioRxiv ; 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37425843

RESUMEN

While RNA secondary structures are critical to regulate alternative splicing of long-range pre-mRNA, the factors that modulate RNA structure and interfere with the recognition of the splice sites are largely unknown. Previously, we identified a small, non-coding microRNA that sufficiently affects stable stem structure formation of Nmnat pre-mRNA to regulate the outcomes of alternative splicing. However, the fundamental question remains whether such microRNA-mediated interference with RNA secondary structures is a global molecular mechanism for regulating mRNA splicing. We designed and refined a bioinformatic pipeline to predict candidate microRNAs that potentially interfere with pre-mRNA stem-loop structures, and experimentally verified splicing predictions of three different long-range pre-mRNAs in the Drosophila model system. Specifically, we observed that microRNAs can either disrupt or stabilize stem-loop structures to influence splicing outcomes. Our study suggests that MicroRNA-Mediated Obstruction of Stem-loop Alternative Splicing (MIMOSAS) is a novel regulatory mechanism for the transcriptome-wide regulation of alternative splicing, increases the repertoire of microRNA function and further indicates cellular complexity of post-transcriptional regulation. One-Sentence Summary: MicroRNA-Mediated Obstruction of Stem-loop Alternative Splicing (MIMOSAS) is a novel regulatory mechanism for the transcriptome-wide regulation of alternative splicing.

9.
Mol Cell ; 83(12): 1983-2002.e11, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37295433

RESUMEN

The evolutionarily conserved minor spliceosome (MiS) is required for protein expression of ∼714 minor intron-containing genes (MIGs) crucial for cell-cycle regulation, DNA repair, and MAP-kinase signaling. We explored the role of MIGs and MiS in cancer, taking prostate cancer (PCa) as an exemplar. Both androgen receptor signaling and elevated levels of U6atac, a MiS small nuclear RNA, regulate MiS activity, which is highest in advanced metastatic PCa. siU6atac-mediated MiS inhibition in PCa in vitro model systems resulted in aberrant minor intron splicing leading to cell-cycle G1 arrest. Small interfering RNA knocking down U6atac was ∼50% more efficient in lowering tumor burden in models of advanced therapy-resistant PCa compared with standard antiandrogen therapy. In lethal PCa, siU6atac disrupted the splicing of a crucial lineage dependency factor, the RE1-silencing factor (REST). Taken together, we have nominated MiS as a vulnerability for lethal PCa and potentially other cancers.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Neoplasias de la Próstata , Masculino , Humanos , Intrones/genética , Neoplasias de la Próstata/metabolismo , Empalme del ARN/genética , Empalmosomas/metabolismo , Transducción de Señal , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Línea Celular Tumoral , Neoplasias de la Próstata Resistentes a la Castración/genética
10.
Sci Rep ; 13(1): 8325, 2023 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-37221359

RESUMEN

While a robust literature on the psychology of conspiracy theories has identified dozens of characteristics correlated with conspiracy theory beliefs, much less attention has been paid to understanding the generalized predisposition towards interpreting events and circumstances as the product of supposed conspiracies. Using a unique national survey of 2015 U.S. adults from October 2020, we investigate the relationship between this predisposition-conspiracy thinking-and 34 different psychological, political, and social correlates. Using conditional inference tree modeling-a machine learning-based approach designed to facilitate prediction using a flexible modeling methodology-we identify the characteristics that are most useful for orienting individuals along the conspiracy thinking continuum, including (but not limited to): anomie, Manicheanism, support for political violence, a tendency to share false information online, populism, narcissism, and psychopathy. Altogether, psychological characteristics are much more useful in predicting conspiracy thinking than are political and social characteristics, though even our robust set of correlates only partially accounts for variance in conspiracy thinking.


Asunto(s)
Trastorno de Personalidad Antisocial , Aprendizaje Automático , Adulto , Humanos , Genotipo , Narcisismo , Salarios y Beneficios
11.
Plant J ; 114(4): 984-994, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36919205

RESUMEN

Currently, the experimentally identified interactome of Arabidopsis (Arabidopsis thaliana) is still far from complete, suggesting that computational prediction methods can complement experimental techniques. Motivated by the prosperity and success of deep learning algorithms and natural language processing techniques, we introduce an integrative deep learning framework, DeepAraPPI, allowing us to predict protein-protein interactions (PPIs) of Arabidopsis utilizing sequence, domain and Gene Ontology (GO) information. Our current DeepAraPPI comprises: (i) a word2vec encoding-based Siamese recurrent convolutional neural network (RCNN) model; (ii) a Domain2vec encoding-based multiple-layer perceptron (MLP) model; and (iii) a GO2vec encoding-based MLP model. Finally, DeepAraPPI combines the prediction results of the three individual predictors through a logistic regression model. Compiling high-quality positive and negative training and test samples by applying strict filtering strategies, DeepAraPPI shows superior performance compared with existing state-of-the-art Arabidopsis PPI prediction methods. DeepAraPPI also provides better cross-species predictive ability in rice (Oryza sativa) than traditional machine learning methods, although the overall performance in cross-species prediction remains to be improved. DeepAraPPI is freely accessible at http://zzdlab.com/deeparappi/. In the meantime, we have also made the source code and data sets of DeepAraPPI available at https://github.com/zjy1125/DeepAraPPI.


Asunto(s)
Arabidopsis , Aprendizaje Profundo , Arabidopsis/genética , Algoritmos , Programas Informáticos , Aprendizaje Automático , Biología Computacional/métodos
12.
Nat Commun ; 14(1): 688, 2023 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-36755019

RESUMEN

A proper understanding of disease etiology will require longitudinal systems-scale reconstruction of the multitiered architecture of eukaryotic signaling. Here we combine state-of-the-art data acquisition platforms and bioinformatics tools to devise PAMAF, a workflow that simultaneously examines twelve omics modalities, i.e., protein abundance from whole-cells, nucleus, exosomes, secretome and membrane; N-glycosylation, phosphorylation; metabolites; mRNA, miRNA; and, in parallel, single-cell transcriptomes. We apply PAMAF in an established in vitro model of TGFß-induced epithelial to mesenchymal transition (EMT) to quantify >61,000 molecules from 12 omics and 10 timepoints over 12 days. Bioinformatics analysis of this EMT-ExMap resource allowed us to identify; -topological coupling between omics, -four distinct cell states during EMT, -omics-specific kinetic paths, -stage-specific multi-omics characteristics, -distinct regulatory classes of genes, -ligand-receptor mediated intercellular crosstalk by integrating scRNAseq and subcellular proteomics, and -combinatorial drug targets (e.g., Hedgehog signaling and CAMK-II) to inhibit EMT, which we validate using a 3D mammary duct-on-a-chip platform. Overall, this study provides a resource on TGFß signaling and EMT.


Asunto(s)
Transición Epitelial-Mesenquimal , Proteínas Hedgehog , Transición Epitelial-Mesenquimal/genética , Proteínas Hedgehog/metabolismo , Células Epiteliales/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo
13.
Brief Bioinform ; 24(2)2023 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-36682013

RESUMEN

While deep learning (DL)-based models have emerged as powerful approaches to predict protein-protein interactions (PPIs), the reliance on explicit similarity measures (e.g. sequence similarity and network neighborhood) to known interacting proteins makes these methods ineffective in dealing with novel proteins. The advent of AlphaFold2 presents a significant opportunity and also a challenge to predict PPIs in a straightforward way based on monomer structures while controlling bias from protein sequences. In this work, we established Structure and Graph-based Predictions of Protein Interactions (SGPPI), a structure-based DL framework for predicting PPIs, using the graph convolutional network. In particular, SGPPI focused on protein patches on the protein-protein binding interfaces and extracted the structural, geometric and evolutionary features from the residue contact map to predict PPIs. We demonstrated that our model outperforms traditional machine learning methods and state-of-the-art DL-based methods using non-representation-bias benchmark datasets. Moreover, our model trained on human dataset can be reliably transferred to predict yeast PPIs, indicating that SGPPI can capture converging structural features of protein interactions across various species. The implementation of SGPPI is available at https://github.com/emerson106/SGPPI.


Asunto(s)
Aprendizaje Automático , Proteínas , Humanos , Proteínas/química , Unión Proteica , Secuencia de Aminoácidos , Saccharomyces cerevisiae/metabolismo
14.
Polit Behav ; 45(2): 781-804, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-34248238

RESUMEN

Numerous studies find associations between social media use and beliefs in conspiracy theories and misinformation. While such findings are often interpreted as evidence that social media causally promotes conspiracy beliefs, we theorize that this relationship is conditional on other individual-level predispositions. Across two studies, we examine the relationship between beliefs in conspiracy theories and media use, finding that individuals who get their news from social media and use social media frequently express more beliefs in some types of conspiracy theories and misinformation. However, we also find that these relationships are conditional on conspiracy thinking--the predisposition to interpret salient events as products of conspiracies--such that social media use becomes more strongly associated with conspiracy beliefs as conspiracy thinking intensifies. This pattern, which we observe across many beliefs from two studies, clarifies the relationship between social media use and beliefs in dubious ideas. Supplementary Information: The online version contains supplementary material available at 10.1007/s11109-021-09734-6.

15.
Sci Rep ; 12(1): 21672, 2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-36522383

RESUMEN

Understanding the individual-level characteristics associated with conspiracy theory beliefs is vital to addressing and combatting those beliefs. While researchers have identified numerous psychological and political characteristics associated with conspiracy theory beliefs, the generalizability of those findings is uncertain because they are typically drawn from studies of only a few conspiracy theories. Here, we employ a national survey of 2021 U.S. adults that asks about 15 psychological and political characteristics as well as beliefs in 39 different conspiracy theories. Across 585 relationships examined within both bivariate (correlations) and multivariate (regression) frameworks, we find that psychological traits (e.g., dark triad) and non-partisan/ideological political worldviews (e.g., populism, support for violence) are most strongly related to individual conspiracy theory beliefs, regardless of the belief under consideration, while other previously identified correlates (e.g., partisanship, ideological extremity) are inconsistently related. We also find that the correlates of specific conspiracy theory beliefs mirror those of conspiracy thinking (the predisposition), indicating that this predisposition operates like an 'average' of individual conspiracy theory beliefs. Overall, our findings detail the psychological and political traits of the individuals most drawn to conspiracy theories and have important implications for scholars and practitioners seeking to prevent or reduce the impact of conspiracy theories.


Asunto(s)
Violencia , Adulto , Humanos , Susceptibilidad a Enfermedades , Incertidumbre
16.
Front Microbiol ; 13: 842976, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35495666

RESUMEN

Identifying human-virus protein-protein interactions (PPIs) is an essential step for understanding viral infection mechanisms and antiviral response of the human host. Recent advances in high-throughput experimental techniques enable the significant accumulation of human-virus PPI data, which have further fueled the development of machine learning-based human-virus PPI prediction methods. Emerging as a very promising method to predict human-virus PPIs, deep learning shows the powerful ability to integrate large-scale datasets, learn complex sequence-structure relationships of proteins and convert the learned patterns into final prediction models with high accuracy. Focusing on the recent progresses of deep learning-powered human-virus PPI predictions, we review technical details of these newly developed methods, including dataset preparation, deep learning architectures, feature engineering, and performance assessment. Moreover, we discuss the current challenges and potential solutions and provide future perspectives of human-virus PPI prediction in the coming post-AlphaFold2 era.

17.
Sci Rep ; 12(1): 3528, 2022 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-35241702

RESUMEN

Understanding the mechanisms of tissue-specific transcriptional regulation is crucial as mis-regulation can cause a broad range of diseases. Here, we investigated transcription factors (TF) that are indispensable for the topological control of tissue specific and cell-type specific regulatory networks as a function of their binding to regulatory elements on promoters and enhancers of corresponding target genes. In particular, we found that promoter-binding TFs that were indispensable for regulatory network control regulate genes that are tissue-specifically expressed and overexpressed in corresponding cancer types. In turn, indispensable, enhancer-binding TFs were enriched with disease and signaling genes as they control an increasing number of cell-type specific regulatory networks. Their target genes were cell-type specific for blood and immune-related cell-types and over-expressed in blood-related cancers. Notably, target genes of indispensable enhancer-binding TFs in cell-type specific regulatory networks were enriched with cancer drug targets, while target genes of indispensable promoter-binding TFs were bona-fide targets of cancer drugs in corresponding tissues. Our results emphasize the significant role control analysis of regulatory networks plays in our understanding of transcriptional regulation, demonstrating potential therapeutic implications in tissue-specific drug discovery research.


Asunto(s)
Redes Reguladoras de Genes , Factores de Transcripción , Elementos de Facilitación Genéticos , Regulación de la Expresión Génica , Regiones Promotoras Genéticas , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
18.
Bioinformatics ; 37(24): 4771-4778, 2021 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-34273146

RESUMEN

MOTIVATION: To complement experimental efforts, machine learning-based computational methods are playing an increasingly important role to predict human-virus protein-protein interactions (PPIs). Furthermore, transfer learning can effectively apply prior knowledge obtained from a large source dataset/task to a small target dataset/task, improving prediction performance. RESULTS: To predict interactions between human and viral proteins, we combine evolutionary sequence profile features with a Siamese convolutional neural network (CNN) architecture and a multi-layer perceptron. Our architecture outperforms various feature encodings-based machine learning and state-of-the-art prediction methods. As our main contribution, we introduce two transfer learning methods (i.e. 'frozen' type and 'fine-tuning' type) that reliably predict interactions in a target human-virus domain based on training in a source human-virus domain, by retraining CNN layers. Finally, we utilize the 'frozen' type transfer learning approach to predict human-SARS-CoV-2 PPIs, indicating that our predictions are topologically and functionally similar to experimentally known interactions. AVAILABILITY AND IMPLEMENTATION: The source codes and datasets are available at https://github.com/XiaodiYangCAU/TransPPI/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Redes Neurales de la Computación , Programas Informáticos , Aprendizaje Automático
19.
Neuropsychopharmacology ; 46(10): 1811-1820, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34188182

RESUMEN

Biomarkers that predict symptom trajectories after trauma can facilitate early detection or intervention for posttraumatic stress disorder (PTSD) and may also advance our understanding of its biology. Here, we aimed to identify trajectory-based biomarkers using blood transcriptomes collected in the immediate aftermath of trauma exposure. Participants were recruited from an Emergency Department in the immediate aftermath of trauma exposure and assessed for PTSD symptoms at baseline, 1, 3, 6, and 12 months. Three empirical symptom trajectories (chronic-PTSD, remitting, and resilient) were identified in 377 individuals based on longitudinal symptoms across four data points (1, 3, 6, and 12 months), using latent growth mixture modeling. Blood transcriptomes were examined for association with longitudinal symptom trajectories, followed by expression quantitative trait locus analysis. GRIN3B and AMOTL1 blood mRNA levels were associated with chronic vs. resilient post-trauma symptom trajectories at a transcriptome-wide significant level (N = 153, FDR-corrected p value = 0.0063 and 0.0253, respectively). We identified four genetic variants that regulate mRNA blood expression levels of GRIN3B. Among these, GRIN3B rs10401454 was associated with PTSD in an independent dataset (N = 3521, p = 0.04). Examination of the BrainCloud and GTEx databases revealed that rs10401454 was associated with brain mRNA expression levels of GRIN3B. While further replication and validation studies are needed, our data suggest that GRIN3B, a glutamate ionotropic receptor NMDA type subunit-3B, may be involved in the manifestation of PTSD. In addition, the blood mRNA level of GRIN3B may be a promising early biomarker for the PTSD manifestation and development.


Asunto(s)
Trastornos por Estrés Postraumático , Biomarcadores , Humanos , Trastornos por Estrés Postraumático/genética , Transcriptoma
20.
Mol Psychiatry ; 26(7): 3077-3092, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33963278

RESUMEN

Posttraumatic stress disorder (PTSD) is a debilitating syndrome with substantial morbidity and mortality that occurs in the aftermath of trauma. Symptoms of major depressive disorder (MDD) are also a frequent consequence of trauma exposure. Identifying novel risk markers in the immediate aftermath of trauma is a critical step for the identification of novel biological targets to understand mechanisms of pathophysiology and prevention, as well as the determination of patients most at risk who may benefit from immediate intervention. Our study utilizes a novel approach to computationally integrate blood-based transcriptomics, genomics, and interactomics to understand the development of risk vs. resilience in the months following trauma exposure. In a two-site longitudinal, observational prospective study, we assessed over 10,000 individuals and enrolled >700 subjects in the immediate aftermath of trauma (average 5.3 h post-trauma (range 0.5-12 h)) in the Grady Memorial Hospital (Atlanta) and Jackson Memorial Hospital (Miami) emergency departments. RNA expression data and 6-month follow-up data were available for 366 individuals, while genotype, transcriptome, and phenotype data were available for 297 patients. To maximize our power and understanding of genes and pathways that predict risk vs. resilience, we utilized a set-cover approach to capture fluctuations of gene expression of PTSD or depression-converting patients and non-converting trauma-exposed controls to find representative sets of disease-relevant dysregulated genes. We annotated such genes with their corresponding expression quantitative trait loci and applied a variant of a current flow algorithm to identify genes that potentially were causal for the observed dysregulation of disease genes involved in the development of depression and PTSD symptoms after trauma exposure. We obtained a final list of 11 driver causal genes related to MDD symptoms, 13 genes for PTSD symptoms, and 22 genes in PTSD and/or MDD. We observed that these individual or combined disorders shared ESR1, RUNX1, PPARA, and WWOX as driver causal genes, while other genes appeared to be causal driver in the PTSD only or MDD only cases. A number of these identified causal pathways have been previously implicated in the biology or genetics of PTSD and MDD, as well as in preclinical models of amygdala function and fear regulation. Our work provides a promising set of initial pathways that may underlie causal mechanisms in the development of PTSD or MDD in the aftermath of trauma.


Asunto(s)
Trastorno Depresivo Mayor , Trastornos por Estrés Postraumático , Depresión , Trastorno Depresivo Mayor/genética , Genómica , Humanos , Estudios Prospectivos , Trastornos por Estrés Postraumático/genética , Transcriptoma/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA