Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Trends Parasitol ; 40(7): 619-632, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38824066

RESUMEN

Vector-borne diseases (VBDs) impose devastating effects on human health and a heavy financial burden. Malaria, Lyme disease, and dengue fever are just a few examples of VBDs that cause severe illnesses. The current strategies to control VBDs consist mainly of environmental modification and chemical use, and to a small extent, genetic approaches. The genetic approaches, including transgenesis/genome modification and gene-drive technologies, provide the basis for developing new tools for VBD prevention by suppressing vector populations or reducing their capacity to transmit pathogens. The regulatory elements such as promoters are required for a robust sex-, tissue-, and stage-specific transgene expression. As discussed in this review, information on the regulatory elements is available for mosquito vectors but is scant for other vectors.


Asunto(s)
Regiones Promotoras Genéticas , Enfermedades Transmitidas por Vectores , Animales , Enfermedades Transmitidas por Vectores/prevención & control , Enfermedades Transmitidas por Vectores/transmisión , Humanos , Vectores Artrópodos/genética
2.
Methods Mol Biol ; 2450: 493-508, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35359325

RESUMEN

Regeneration-capable flatworms are highly informative research models to study the mechanisms of stem cell regulation, regeneration, and tissue patterning. Transgenesis is a powerful research tool for investigating gene function, but until recently, a transgenesis method was missing in flatworms, hampering their wider adoption in biomedical research. Here we describe a detailed protocol to create stable transgenic lines of the flatworm M. lignano using random integration of DNA constructs through microinjection into single-cell stage embryos.


Asunto(s)
Platelmintos , Animales , Animales Modificados Genéticamente , Técnicas de Transferencia de Gen , Platelmintos/genética , Células Madre/fisiología
4.
Genetics ; 218(3)2021 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-33999134

RESUMEN

Regeneration-capable flatworms are informative research models to study the mechanisms of stem cell regulation, regeneration, and tissue patterning. The free-living flatworm Macrostomum lignano is currently the only flatworm where stable transgenesis is available, and as such it offers a powerful experimental platform to address questions that were previously difficult to answer. The published transgenesis approach relies on random integration of DNA constructs into the genome. Despite its efficiency, there is room and need for further improvement and diversification of transgenesis methods in M. lignano. Transposon-mediated transgenesis is an alternative approach, enabling easy mapping of the integration sites and the possibility of insertional mutagenesis studies. Here, we report for the first time that transposon-mediated transgenesis using piggyBac can be performed in M. lignano to create stable transgenic lines with single-copy transgene insertions.


Asunto(s)
Elementos Transponibles de ADN/genética , Técnicas de Transferencia de Gen , Platelmintos/genética , Animales , Transgenes
5.
Evodevo ; 11: 5, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32158530

RESUMEN

Macrostomum lignano is a free-living flatworm that is emerging as an attractive experimental animal for research on a broad range of biological questions. One feature setting it apart from other flatworms is the successful establishment of transgenesis methods, facilitated by a steady supply of eggs in the form of single-cell zygotes that can be readily manipulated. This, in combination with the transparency of the animal and its small size, creates practical advantages for imaging and fluorescence-activated cell sorting in studies related to stem cell biology and regeneration. M. lignano can regenerate most of its body parts, including the germline, thanks to the neoblasts, which represent the flatworm stem cell system. Interestingly, neoblasts seem to have a high capacity of cellular maintenance, as M. lignano can survive up to 210 Gy of γ-irradiation, and partially offset the negative consequence of ageing. As a non-self-fertilizing simultaneous hermaphrodite that reproduces in a sexual manner, M. lignano is also used to study sexual selection and other evolutionary aspects of sexual reproduction. Work over the past several years has led to the development of molecular resources and tools, including high-quality genome and transcriptome assemblies, transcriptional profiling of the germline and somatic neoblasts, gene knockdown, and in situ hybridization. The increasingly detailed characterization of this animal has also resulted in novel research questions, such as bio-adhesion based on its adhesion-release glands and genome evolution due to its recent whole-genome duplication.

6.
Zoological Lett ; 5: 7, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30805201

RESUMEN

BACKGROUND: The free-living marine flatworm Macrostomum lignano is a powerful model organism for use in studying mechanisms of regeneration and stem cell regulation due to its combination of biological and experimental properties, including the availability of transgenesis methods, which is unique among flatworm models. However, due to its relatively recent introduction in research, many aspects of this animal's biology remain unknown. One such question is the influence of culture temperature on Macrostomum biology. RESULTS: We systematically investigated how different culture temperatures affect development time, reproduction rate, regeneration, heat shock response, and gene knockdown efficiency by RNA interference (RNAi) in M. lignano. We used marker transgenic lines to accurately measure the regeneration endpoint, and to establish the stress response threshold for temperature shock. We found that compared to the culture temperature of 20 °C commonly used for M. lignano, temperatures of 25 °C-30 °C substantially increase the speed of development and regeneration, lead to faster manifestation of RNAi phenotypes, and increase reproduction rate without detectable negative consequences for the animal, while temperatures above 30 °C elicit a heat shock response. CONCLUSIONS: We show that altering temperature conditions can be used to reduce the time required to establish M. lignano cultures, perform RNAi experiments, store important lines, and optimize microinjection procedures for transgenesis. These findings will help to optimize the design of experiments in M. lignano, and thus facilitate future research using this model organism.

7.
Int J Dev Biol ; 62(6-7-8): 551-558, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29938766

RESUMEN

Understanding the process of regeneration has been one of the longstanding scientific aims, from a fundamental biological perspective, as well as within the applied context of regenerative medicine. Because regeneration competence varies greatly between organisms, it is essential to investigate different experimental animals. The free-living marine flatworm Macrostomum lignano is a rising model organism for this type of research, and its power stems from a unique set of biological properties combined with amenability to experimental manipulation. The biological properties of interest include production of single-cell fertilized eggs, a transparent body, small size, short generation time, ease of culture, the presence of a pluripotent stem cell population, and a large regeneration competence. These features sparked the development of molecular tools and resources for this animal, including high-quality genome and transcriptome assemblies, gene knockdown, in situ hybridization, and transgenesis. Importantly, M. lignano is currently the only flatworm species for which transgenesis methods are established. This review summarizes biological features of M. lignano and recent technological advances towards experimentation with this animal. In addition, we discuss the experimental potential of this model organism for different research questions related to regeneration and stem cell biology.


Asunto(s)
Modelos Animales , Platelmintos/fisiología , Células Madre Pluripotentes/fisiología , Regeneración/fisiología , Animales , Biología Evolutiva/métodos , Genoma de los Helmintos/genética , Filogenia , Platelmintos/clasificación , Platelmintos/genética , Células Madre Pluripotentes/metabolismo , Regeneración/genética , Transcriptoma/genética
8.
Nat Commun ; 8(1): 2120, 2017 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-29242515

RESUMEN

Regeneration-capable flatworms are informative research models to study the mechanisms of stem cell regulation, regeneration, and tissue patterning. However, the lack of transgenesis methods considerably hampers their wider use. Here we report development of a transgenesis method for Macrostomum lignano, a basal flatworm with excellent regeneration capacity. We demonstrate that microinjection of DNA constructs into fertilized one-cell stage eggs, followed by a low dose of irradiation, frequently results in random integration of the transgene in the genome and its stable transmission through the germline. To facilitate selection of promoter regions for transgenic reporters, we assembled and annotated the M. lignano genome, including genome-wide mapping of transcription start regions, and show its utility by generating multiple stable transgenic lines expressing fluorescent proteins under several tissue-specific promoters. The reported transgenesis method and annotated genome sequence will permit sophisticated genetic studies on stem cells and regeneration using M. lignano as a model organism.


Asunto(s)
Técnicas de Transferencia de Gen , Genoma de los Helmintos/genética , Platelmintos/genética , Regeneración/genética , Animales , Animales Modificados Genéticamente , Embrión no Mamífero/embriología , Embrión no Mamífero/metabolismo , Femenino , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Masculino , Especificidad de Órganos/genética , Ovario/metabolismo , Platelmintos/embriología , Platelmintos/fisiología , Regiones Promotoras Genéticas/genética , Testículo/metabolismo , Transgenes/genética
9.
Pharmacogn Mag ; 7(26): 171-5, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21716927

RESUMEN

The genotoxicity and toxicity of ethnomedicinal Philippine plants, which include Cassia fistula, Derris elliptica, Ficus elastica, Gliciridia sepium, Michelia alba, Morus alba, Pogostemon cablin and Ricinus communis, were tested using the Vitotox assay. The plants are used traditionally to treat several disorders like diabetes, weakness, menorrhagia, headache, toothache and rheumatism. The dried leaves were homogenized for overnight soaking in methanol at room temperature. The resulting alcoholic extracts were filtered and concentrated in vacuo and tested for their genotoxicity and cytotoxicity using Vitotox®. Results showed that the medicinal plants that were tested are not genotoxic nor cytotoxic, except for R. communis and P. cablin, which showed toxicity at high doses (low dilutions) in the absence of S9.

10.
Bioelectromagnetics ; 32(7): 580-4, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21488065

RESUMEN

We performed a genotoxicity investigation of extremely low-frequency (ELF) magnetic fields (MFs, 50 Hz, 100 and 500 µT, 1 and 2 h exposure) alone and in combination with known chemical mutagens using the VITOTOX test. This test is a very sensitive reporter assay of Salmonella typhimurium bacteria based on the SOS response. Our study showed that ELF-MFs do not induce SOS-based mutagenicity in S. typhimurium bacteria and do not show any synergetic effect when combined with chemical mutagens.


Asunto(s)
Daño del ADN , Campos Magnéticos/efectos adversos , Mutágenos/administración & dosificación , Respuesta SOS en Genética/efectos de la radiación , Salmonella typhimurium/metabolismo , Salmonella typhimurium/efectos de la radiación , Pruebas de Mutagenicidad , Salmonella typhimurium/genética , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...