Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Exp Med ; 220(1)2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36315050

RESUMEN

Inflammasomes integrate cytosolic evidence of infection or damage to mount inflammatory responses. The inflammasome sensor NLRP1 is expressed in human keratinocytes and coordinates inflammation in the skin. We found that diverse stress signals induce human NLRP1 inflammasome assembly by activating MAP kinase p38: While the ribotoxic stress response to UV and microbial molecules exclusively activates p38 through MAP3K ZAKα, infection with arthropod-borne alphaviruses, including Semliki Forest and Chikungunya virus, activates p38 through ZAKα and potentially other MAP3K. We demonstrate that p38 directly phosphorylates NLRP1 and that serine 107 in the linker region is critical for activation. NLRP1 phosphorylation is followed by ubiquitination of NLRP1PYD, N-terminal degradation of NLRP1, and nucleation of inflammasomes by NLRP1UPA-CARD. In contrast, activation of NLRP1 by nanobody-mediated ubiquitination, viral proteases, or inhibition of DPP9 was independent of p38 activity. Taken together, we define p38 activation as a unifying signaling hub that controls NLRP1 inflammasome activation by integrating a variety of cellular stress signals relevant to the skin.


Asunto(s)
Inflamasomas , Virosis , Proteínas Quinasas p38 Activadas por Mitógenos , Humanos , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Inflamasomas/metabolismo , Proteínas NLR/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
2.
Curr Opin Immunol ; 78: 102251, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36242870

RESUMEN

The interferon-regulated kinase PKR (protein kinase RNA-activated) is a potent innate immune factor against a broad range of viruses. Being part of the integrated stress response (ISR), its restrictive effect is predominantly exerted by phosphorylating the eukaryotic translation-initiation factor eIF2, thereby turning it into an inhibitor of translation-initiation factor eIF2B. A plethora of viruses are known to evade the shutdown of cellular mRNA translation by interfering either with PKR activation or with eIF2 phosphorylation. Recently, a novel PKR evasion strategy was described: proteins from three taxonomically distinct RNA viruses allow for full PKR activation and eIF2 phosphorylation in the infected cell, but protect eIF2B from inhibition by phosphorylated eIF2, thus enabling mRNA translation in the presence of an activated ISR.


Asunto(s)
Factor 2B Eucariótico de Iniciación , Factor 2 Eucariótico de Iniciación , Inmunidad Innata , Virosis , Humanos , Factor 2 Eucariótico de Iniciación/genética , Factor 2 Eucariótico de Iniciación/metabolismo , Factor 2B Eucariótico de Iniciación/genética , Factor 2B Eucariótico de Iniciación/metabolismo , Inmunidad Innata/genética , Inmunidad Innata/fisiología , Interferones , Proteínas Quinasas/inmunología , Proteínas Quinasas/metabolismo , ARN Mensajero , Virosis/genética , Virosis/inmunología , Virosis/metabolismo
3.
EMBO Mol Med ; 14(6): e15415, 2022 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-35438238

RESUMEN

Inflammasomes sense intracellular clues of infection, damage, or metabolic imbalances. Activated inflammasome sensors polymerize the adaptor ASC into micron-sized "specks" to maximize caspase-1 activation and the maturation of IL-1 cytokines. Caspase-1 also drives pyroptosis, a lytic cell death characterized by leakage of intracellular content to the extracellular space. ASC specks are released among cytosolic content, and accumulate in tissues of patients with chronic inflammation. However, if extracellular ASC specks contribute to disease, or are merely inert remnants of cell death remains unknown. Here, we show that camelid-derived nanobodies against ASC (VHHASC ) target and disassemble post-pyroptotic inflammasomes, neutralizing their prionoid, and inflammatory functions. Notably, pyroptosis-driven membrane perforation and exposure of ASC specks to the extracellular environment allowed VHHASC to target inflammasomes while preserving pre-pyroptotic IL-1ß release, essential to host defense. Systemically administrated mouse-specific VHHASC attenuated inflammation and clinical gout, and antigen-induced arthritis disease. Hence, VHHASC neutralized post-pyroptotic inflammasomes revealing a previously unappreciated role for these complexes in disease. VHHASC are the first biologicals that disassemble pre-formed inflammasomes while preserving their functions in host defense.


Asunto(s)
Inflamasomas , Anticuerpos de Dominio Único , Animales , Proteínas Adaptadoras de Señalización CARD/metabolismo , Caspasa 1/metabolismo , Humanos , Inflamasomas/metabolismo , Inflamación/metabolismo , Ratones , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Piroptosis
4.
Science ; 371(6530)2021 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-33436526

RESUMEN

The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to spread, with devastating consequences. For passive immunization efforts, nanobodies have size and cost advantages over conventional antibodies. In this study, we generated four neutralizing nanobodies that target the receptor binding domain of the SARS-CoV-2 spike protein. We used x-ray crystallography and cryo-electron microscopy to define two distinct binding epitopes. On the basis of these structures, we engineered multivalent nanobodies with more than 100 times the neutralizing activity of monovalent nanobodies. Biparatopic nanobody fusions suppressed the emergence of escape mutants. Several nanobody constructs neutralized through receptor binding competition, whereas other monovalent and biparatopic nanobodies triggered aberrant activation of the spike fusion machinery. These premature conformational changes in the spike protein forestalled productive fusion and rendered the virions noninfectious.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/inmunología , SARS-CoV-2/inmunología , Anticuerpos de Dominio Único/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Sustitución de Aminoácidos , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , Anticuerpos Neutralizantes/química , Anticuerpos Neutralizantes/metabolismo , Anticuerpos Antivirales/química , Anticuerpos Antivirales/metabolismo , Afinidad de Anticuerpos , Antígenos Virales/inmunología , Sitios de Unión de Anticuerpos , COVID-19/virología , Línea Celular , Microscopía por Crioelectrón , Epítopos , Humanos , Fusión de Membrana , Mutación , Unión Proteica , Conformación Proteica , Dominios Proteicos , Receptores de Coronavirus/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/fisiología , Anticuerpos de Dominio Único/química , Anticuerpos de Dominio Único/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Replicación Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...