Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 26(23): 16747-16764, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38818624

RESUMEN

Indoleamine 2,3-dioxygenase 1 (IDO) is a tryptophan (Trp) metabolic enzyme along the kynurenine (NFK) pathway. Under pathological conditions, IDO overexpressed by tumor cells causes depletion of tryptophan and the accumulation of metabolic products, which inhibit the local immune response and form immune escape. Therefore, the suppression of IDO activity is one of the strategies for tumor immunotherapy, and drug design for this target has been the focus of research for more than two decades. Apart from IDO, tryptophan dioxygenase (TDO) of the same family can also catalyze the same biochemical reaction in the human body, but it has different tissue distribution and substrate selectivity from IDO. Based on the principle of drug design with high potency and low cross-reactivity to specific targets, in this subject, the activity and selectivity of IDO and TDO toward small molecular inhibitors were studied from the perspective of thermodynamics and kinetics. The aim was to elucidate the structural requirements for achieving favorable biological activity and selectivity of IDO and TDO inhibitors. Specifically, the interactions of inhibitors from eight families with IDO and TDO were initially investigated through molecular docking and molecular dynamics simulations, and the thermodynamic data for binding of inhibitors were predicted by the molecular mechanics/generalized Born surface area (MM/GBSA) method. Secondly, we explored the free energy landscape of JKloops, the kinetic control element of IDO/TDO, using temperature replica exchange molecular dynamics (T-REMD) simulations and elucidated the connection between the rules of IDO/TDO conformational changes and the inhibitor selectivity mechanism. Furthermore, the binding and dissociation processes of the C1 inhibitor (NLG919) were simulated by the adaptive steering molecular dynamics (ASMD) method, which not only addressed the possible stable, metastable, and transition states for C1 inhibitor-IDO/TDO interactions, but also accurately predicted kinetic data for C1 inhibitor binding and dissociation. In conclusion, we have constructed a complete process from enzyme (IDO/TDO) conformational activation to inhibitor binding/dissociation and used the thermodynamic and kinetic data of each link as clues to verify the control mechanism of IDO/TDO on inhibitor selectivity. This is of great significance for us to understand the design principles of tumor immunotherapy drugs and to avoid drug resistance of immunotherapy drugs.


Asunto(s)
Inhibidores Enzimáticos , Indolamina-Pirrol 2,3,-Dioxigenasa , Termodinámica , Triptófano Oxigenasa , Indolamina-Pirrol 2,3,-Dioxigenasa/antagonistas & inhibidores , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenasa/química , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Humanos , Triptófano Oxigenasa/metabolismo , Triptófano Oxigenasa/antagonistas & inhibidores , Triptófano Oxigenasa/química , Simulación de Dinámica Molecular , Simulación del Acoplamiento Molecular , Cinética
2.
Comput Struct Biotechnol J ; 19: 2761-2774, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34093991

RESUMEN

GS-9669 is a non-nucleos(t)ide inhibitor (NNI) binding to the thumb site II of the Hepatitis C virus (HCV) NS5B polymerase and has advanced into phase II trials. To clarify the drug resistance mechanisms of GS-9669 caused by M423T/I/V, L419M, R422K, and I482L mutations of NS5B polymerase (GT1b) and the receptor-ligand interactions during the binding process, a series of molecular simulation methods including molecular dynamics (MD) simulations and adaptive steered molecular dynamics (ASMD) simulations were performed for the wild-type (WT) and six mutant NS5B/GS-9669 complexes. The calculated results indicate that the binding free energies of the mutant systems are less negative than that of the WT system, indicating that these mutations will indeed cause NS5B to produce different degrees of resistance to GS-9669. The mutation-induced drug resistances are mainly caused by the loss of binding affinities of Leu419 and Trp528 with GS-9669 or the formation of multiple solvent bridges. Moreover, the ASMD calculations show that GS-9669 binds to the thumb II sites of the seven NS5B polymerases in distinct pathways without any obvious energy barriers. Although the recognition methods and binding pathways are distinct, the binding processes of GS-9669 with the WT and mutant NS5B polymerases are basically controlled thermodynamically. This study clearly reveals the resistance mechanisms of GS-9669 caused by M423T/I/V, L419M, R422K, and I482L mutations of HCV NS5B polymerase and provides some valuable clues for further optimization and design of novel NS5B inhibitors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...