Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 299
Filtrar
1.
J Clin Invest ; 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39255040

RESUMEN

A leading cause of mortality after influenza infection is the development of a secondary bacterial pneumonia. In the absence of a bacterial superinfection, prescribing antibacterial therapies is not indicated but has become a common clinical practice for those presenting with a respiratory viral illness. In a murine model, we found that antibiotic use during influenza infection impaired the lung innate immunologic defenses toward a secondary challenge with methicillin-resistant Staphylococcus aureus (MRSA). Antibiotics augment lung eosinophils, which have inhibitory effects on macrophage function through the release of major basic protein. Moreover, we demonstrated antibiotic treatment during influenza infection causes a fungal dysbiosis that drive lung eosinophilia and impair MRSA clearance. Finally, we evaluated three cohorts of hospitalized patients and found eosinophils positively correlated with antibiotic use, systemic inflammation, and worsened outcomes. Altogether, our work demonstrates a detrimental effect of antibiotic treatment during influenza infection that has harmful immunologic consequences via recruitment of eosinophils to the lungs thereby increasing the risk of developing a secondary bacterial infection.

2.
bioRxiv ; 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39229171

RESUMEN

Pseudomonas aeruginosa is a common nosocomial pathogen and a major cause of morbidity and mortality in hospitalized patients. Multiple reports highlight that P. aeruginosa gastrointestinal colonization may precede systemic infections by this pathogen. Gaining a deeper insight into the dynamics of P. aeruginosa gastrointestinal carriage is an essential step in managing gastrointestinal colonization and could contribute to preventing bacterial transmission and progression to systemic infection. Here, we present a clinically relevant mouse model relying on parenteral vancomycin pretreatment and a single orogastric gavage of a controlled dose of P. aeruginosa. Robust carriage was observed with multiple clinical isolates, and carriage persisted for up to 60 days. Histological and microbiological examination of mice indicated that this model indeed represented carriage and not infection. We then used a barcoded P. aeruginosa library along with the sequence tag-based analysis of microbial populations (STAMPR) analytic pipeline to quantify bacterial population dynamics and bottlenecks during the establishment of the gastrointestinal carriage. Analysis indicated that most of the P. aeruginosa population was rapidly eliminated in the stomach, but the few bacteria that moved to the small intestine and the caecum expanded significantly. Hence, the stomach constitutes a significant barrier against gastrointestinal carriage of P. aeruginosa, which may have clinical implications for hospitalized patients.

3.
Geroscience ; 2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39243283

RESUMEN

The COVID-19 pandemic posed unprecedented challenges to healthcare systems worldwide, particularly in managing critically ill patients requiring mechanical ventilation early in the pandemic. Surging patient volumes strained hospital resources and complicated the implementation of standard-of-care intensive care unit (ICU) practices, including sedation management. The objective of this study was to evaluate the impact of an evidence-based ICU sedation bundle during the early COVID-19 pandemic. The bundle was designed by a multi-disciplinary collaborative to reinforce best clinical practices related to ICU sedation. The bundle was implemented prospectively with retrospective analysis of electronic medical record data. The setting was the ICUs of a single-center tertiary hospital. The patients were the ICU patients requiring mechanical ventilation for confirmed COVID-19 between March and June 2020. A learning health collaborative developed a sedation bundle encouraging goal-directed sedation and use of adjunctive strategies to avoid excessive sedative administration. Implementation strategies included structured in-service training, audit and feedback, and continuous improvement. Sedative utilization and clinical outcomes were compared between patients admitted before and after the sedation bundle implementation. Quasi-experimental interrupted time-series analyses of pre and post intervention sedative utilization, hospital length of stay, and number of days free of delirium, coma, or death in 21 days (as a quantitative measure of encephalopathy burden). The analysis used the time duration between start of the COVID-19 wave and ICU admission to identify a "breakpoint" indicating a change in observed trends. A total of 183 patients (age 59.0 ± 15.9 years) were included, with 83 (45%) admitted before the intervention began. Benzodiazepine utilization increased for patients admitted after the bundle implementation, while agents intended to reduce benzodiazepine use showed no greater utilization. No "breakpoint" was identified to suggest the bundle impacted any endpoint measure. However, increasing time between COVID-19 wave start and ICU admission was associated with fewer delirium, coma, and death-free days (ß = - 0.044 [95% CI - 0.085, - 0.003] days/wave day); more days of benzodiazepine infusion (ß = 0.056 [95% CI 0.025, 0.088] days/wave day); and a higher maximum benzodiazepine infusion rate (ß = 0.079 [95% CI 0.037, 0.120] mg/h/wave day). The evidence-based practice bundle did not significantly alter sedation utilization patterns during the first COVID-19 wave. Sedation practices deteriorated and encephalopathy burden increased over time, highlighting that strategies to reinforce clinical practices may be hindered under conditions of extreme healthcare system strain.

4.
Nat Immunol ; 25(9): 1607-1622, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39138384

RESUMEN

The evolution of T cell molecular signatures in the distal lung of patients with severe pneumonia is understudied. Here, we analyzed T cell subsets in longitudinal bronchoalveolar lavage fluid samples from 273 patients with severe pneumonia, including unvaccinated patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or with respiratory failure not linked to pneumonia. In patients with SARS-CoV-2 pneumonia, activation of interferon signaling pathways, low activation of the NF-κB pathway and preferential targeting of spike and nucleocapsid proteins early after intubation were associated with favorable outcomes, whereas loss of interferon signaling, activation of NF-κB-driven programs and specificity for the ORF1ab complex late in disease were associated with mortality. These results suggest that in patients with severe SARS-CoV-2 pneumonia, alveolar T cell interferon responses targeting structural SARS-CoV-2 proteins characterize individuals who recover, whereas responses against nonstructural proteins and activation of NF-κB are associated with poor outcomes.


Asunto(s)
COVID-19 , FN-kappa B , SARS-CoV-2 , Humanos , COVID-19/inmunología , SARS-CoV-2/inmunología , Masculino , Femenino , Persona de Mediana Edad , FN-kappa B/metabolismo , Anciano , Líquido del Lavado Bronquioalveolar/inmunología , Adulto , Transducción de Señal/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Interferones/metabolismo , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Linfocitos T/inmunología , Alveolos Pulmonares/inmunología , Alveolos Pulmonares/patología
5.
medRxiv ; 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39148859

RESUMEN

Pneumonia and other lower respiratory tract infections are the leading contributors to global mortality of any communicable disease [1]. During normal pulmonary homeostasis, competing microbial immigration and elimination produce a transient microbiome with distinct microbial states [2-4]. Disruption of underlying ecological forces, like aspiration rate and immune tone, are hypothesized to drive microbiome dysbiosis and pneumonia progression [5-7]. However, the precise microbiome transitions that accompany clinical outcomes in severe pneumonia are unknown. Here, we leverage our unique systematic and serial bronchoscopic sampling to combine quantitative PCR and culture for bacterial biomass with 16S rRNA gene amplicon, shotgun metagenomic, and transcriptomic sequencing in patients with suspected pneumonia to distill microbial signatures of clinical outcome. These data support the presence of four distinct microbiota states-oral-like, skin-like, Staphylococcus-predominant, and mixed-each differentially associated with pneumonia subtype and responses to pneumonia therapy. Infection-specific dysbiosis, quantified relative to non-pneumonia patients, associates with bacterial biomass and elevated oral-associated microbiota. Time series analysis suggests that microbiome shifts from baseline are greater with successful pneumonia therapy, following distinct trajectories dependent on the pneumonia subtype. In summary, our results highlight the dynamic nature of the lung microbiome as it progresses through community assemblages that parallel patient prognosis. Application of a microbial ecology framework to study lower respiratory tract infections enables contextualization of the microbiome composition and gene content within clinical phenotypes. Further unveiling the ecological dynamics of the lung microbial ecosystem provides critical insights for future work toward improving pneumonia therapy.

6.
Ann Am Thorac Soc ; 21(9): 1219-1237, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39051991

RESUMEN

Continued improvements in the treatment of pulmonary infections have paradoxically resulted in a growing challenge of individuals with postinfectious pulmonary complications (PIPCs). PIPCs have been long recognized after tuberculosis, but recent experiences such as the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic have underscored the importance of PIPCs following other lower respiratory tract infections. Independent of the causative pathogen, most available studies of pulmonary infections focus on short-term outcomes rather than long-term morbidity among survivors. In this document, we establish a conceptual scope for PIPCs with discussion of globally significant pulmonary pathogens and an examination of how these pathogens can damage different components of the lung, resulting in a spectrum of PIPCs. We also review potential mechanisms for the transition from acute infection to PIPC, including the interplay between pathogen-mediated injury and aberrant host responses, which together result in PIPCs. Finally, we identify cross-cutting research priorities for the field to facilitate future studies to establish the incidence of PIPCs, define common mechanisms, identify therapeutic strategies, and ultimately reduce the burden of morbidity in survivors of pulmonary infections.


Asunto(s)
Investigación Biomédica , Enfermedades Pulmonares , Humanos , COVID-19/epidemiología , Enfermedades Pulmonares/terapia , Enfermedades Pulmonares/etiología , Infecciones del Sistema Respiratorio/epidemiología , SARS-CoV-2 , Sociedades Médicas , Estados Unidos/epidemiología
7.
Learn Health Syst ; 8(3): e10417, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39036530

RESUMEN

Introduction: The rapid development of artificial intelligence (AI) in healthcare has exposed the unmet need for growing a multidisciplinary workforce that can collaborate effectively in the learning health systems. Maximizing the synergy among multiple teams is critical for Collaborative AI in Healthcare. Methods: We have developed a series of data, tools, and educational resources for cultivating the next generation of multidisciplinary workforce for Collaborative AI in Healthcare. We built bulk-natural language processing pipelines to extract structured information from clinical notes and stored them in common data models. We developed multimodal AI/machine learning (ML) tools and tutorials to enrich the toolbox of the multidisciplinary workforce to analyze multimodal healthcare data. We have created a fertile ground to cross-pollinate clinicians and AI scientists and train the next generation of AI health workforce to collaborate effectively. Results: Our work has democratized access to unstructured health information, AI/ML tools and resources for healthcare, and collaborative education resources. From 2017 to 2022, this has enabled studies in multiple clinical specialties resulting in 68 peer-reviewed publications. In 2022, our cross-discipline efforts converged and institutionalized into the Center for Collaborative AI in Healthcare. Conclusions: Our Collaborative AI in Healthcare initiatives has created valuable educational and practical resources. They have enabled more clinicians, scientists, and hospital administrators to successfully apply AI methods in their daily research and practice, develop closer collaborations, and advanced the institution-level learning health system.

8.
Diagnostics (Basel) ; 14(13)2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-39001278

RESUMEN

INTRODUCTION: In patients with suspected pneumonia who are tested with respiratory culture and multiplex PCR, the potential added benefit of next-generation sequencing technologies is unknown. METHODS: This was a single-center, retrospective study in which residual bronchoalveolar lavage (BAL) specimens were retrieved from hospitalized patients. We compared its research-use-only Respiratory Pathogen Illumina Panel (RPIP) results to culture and BioFire® FilmArray Pneumonia Panel (BioFire® PN) results from critically ill patients. RESULTS: In total, 47 BAL specimens from 47 unique patients were included. All BAL samples were tested with culture and multiplex PCR. In total, 38 of the 47 BALs were consistent with a clinical picture of pneumonia per chart review. Additional testing of the 38 samples with the RPIP identified a new bacterium in 20 patients, a new virus in 4 patients, a new bacterium plus virus in 4 patients, and no additional organisms in 10 patients. In 17 (44.5%) of these patients, the RPIP results could have indicated an antibiotic addition. Compared with cultures, the RPIP had an overall sensitivity of 64% and specificity of 98%, with a 0% sensitivity for fungus and 14% sensitivity for mycobacteria. Compared with BioFire® PN, the RPIP was 70% sensitive and 99% specific, with a 74% sensitivity for bacteria and 33% sensitivity for viruses. The RPIP was 29% more sensitive for HAP/VAP bacterial targets compared with CAP. CONCLUSIONS: Emerging NGS technologies such as the RPIP may have a role in identifying the etiology of pneumonia, even when patients have BAL culture and multiplex PCR results available. Similar to prior studies evaluating RPIP, our study showed this platform lacked sensitivity when compared with cultures, particularly for fungi and mycobacteria. However, the high specificity of the test can be leveraged when clinicians are seeking to rule out certain infections.

9.
medRxiv ; 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38766045

RESUMEN

Background: Pneumonia is the leading cause of infectious deaths and the most common infection identified in ICU patients. Assessment of bronchoalveolar lavage fluid (BALF) cellularity can aid in pneumonia diagnosis. Low percentages (<50%) of BALF neutrophils have a high negative predictive value for bacterial pneumonia in a general medical ICU population, but unclear operating characteristics in patients with immunocompromise and neutropenia remain unknown. Methods: We analyzed a large cohort of BALF specimens obtained for routine care for suspected pneumonia in mechanically ventilated patients and enrolled in the single-center Successful Clinical Response In Pneumonia Therapy (SCRIPT) study. BALF neutrophils were reported as a percentage of leukocytes by the clinical laboratory. The etiology of each episode of suspected pneumonia was adjudicated by a committee of critical care physicians using a predefined protocol. Immunocompromise was defined using predetermined criteria by the study research team. Neutropenia was defined here as a peripheral ANC <1500 cells/µl. Data are expressed as median [Quartile (Q) 1, Q3] and compared using the Mann-Whitney U test. Results: 688 mechanically ventilated patients with suspected pneumonia were included. 409 (59.4%) were male; median age was 62 [51,71]. 461 patients (67.0%) were immunocompetent, 149 (21.7%) were immunocompromised without neutropenia and 78 (11.3%) were neutropenic at some point during their admission. A total of 1746 BALs were performed. Fifty-seven BALs were obtained on a day where the patient's ANC<1500. Amongst pneumonia episodes classified as bacterial, no difference was found amongst BALF percent neutrophils taken patients who were immunocompetent and those who were immunocompromised but not neutropenic on day of sampling: 84.0% [69.0, 93.0] vs 87.0% [68.3, 93.0], p = 0.878 (Figure 1B). However, BALF percent neutrophils were significantly lower in patients neutropenic on day of sampling, with median BALF percent neutrophils of only 65.0% [22.3, 70.5] (p=0.016 compared with immunocompromised group, p=0.0096 compared with immunocompetent group). Conclusion: Among patients with bacterial pneumonia, BALF neutrophil percentage was not significantly decreased by a spectrum of immunocompromise. However, the subset of patients who were acutely neutropenic at the time of BAL sampling had significantly lower BALF % neutrophils. A traditional approach using BALF<50% to suggest against bacterial pneumonia may be inaccurate in this particular population.

10.
IISE Trans Healthc Syst Eng ; 14(1): 32-41, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38646086

RESUMEN

Evidence suggests system-level norms and care processes influence individual patients' medical decisions, including end-of-life decisions for patients with critical illnesses like acute respiratory failure. Yet, little is known about how these processes unfold over the course of a patient's critical illness in the intensive care unit (ICU). Our objective was to map current-state ICU care delivery processes for patients with acute respiratory failure and to identify opportunities to improve the process. We conducted a process mapping study at two academic medical centers, using focus groups and semi-structured interviews. The 70 participants represented 17 distinct roles in ICU care, including interprofessional medical ICU and palliative care clinicians, surrogate decision makers, and patient survivors. Participants refined and endorsed a process map of current-state care delivery for all patients admitted to the ICU with acute respiratory failure requiring mechanical ventilation. The process contains four critical periods for active deliberation about the use of life-sustaining treatments. However, active deliberation steps are inconsistently performed and frequently disrupted, leading to prolongation of life-sustaining treatment by default, without consideration of patients' individual goals and priorities. Interventions to standardize active deliberation in the ICU may improve treatment decisions for ICU patients with acute respiratory failure.

11.
JCI Insight ; 9(8)2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38502186

RESUMEN

BACKGROUNDSurvivors of pneumonia, including SARS-CoV-2 pneumonia, are at increased risk for cognitive dysfunction and dementia. In rodent models, cognitive dysfunction following pneumonia has been linked to the systemic release of lung-derived pro-inflammatory cytokines. Microglia are poised to respond to inflammatory signals from the circulation, and their dysfunction has been linked to cognitive impairment in murine models of dementia and in humans.METHODSWe measured levels of 55 cytokines and chemokines in bronchoalveolar lavage fluid and plasma from 341 patients with respiratory failure and 13 healthy controls, including 93 unvaccinated patients with COVID-19 and 203 patients with other causes of pneumonia. We used flow cytometry to sort neuroimmune cells from postmortem brain tissue from 5 patients who died from COVID-19 and 3 patients who died from other causes for single-cell RNA-sequencing.RESULTSMicroglia from patients with COVID-19 exhibited a transcriptomic signature suggestive of their activation by circulating pro-inflammatory cytokines. Peak levels of pro-inflammatory cytokines were similar in patients with pneumonia irrespective of etiology, but cumulative cytokine exposure was higher in patients with COVID-19. Treatment with corticosteroids reduced expression of COVID-19-specific cytokines.CONCLUSIONProlonged lung inflammation results in sustained elevations in circulating cytokines in patients with SARS-CoV-2 pneumonia compared with those with pneumonia secondary to other pathogens. Microglia from patients with COVID-19 exhibit transcriptional responses to inflammatory cytokines. These findings support data from rodent models causally linking systemic inflammation with cognitive dysfunction in pneumonia and support further investigation into the role of microglia in pneumonia-related cognitive dysfunction.FUNDINGSCRIPT U19AI135964, UL1TR001422, P01AG049665, P01HL154998, R01HL149883, R01LM013337, R01HL153122, R01HL147290, R01HL147575, R01HL158139, R01ES034350, R01ES027574, I01CX001777, U01TR003528, R21AG075423, T32AG020506, F31AG071225, T32HL076139.


Asunto(s)
Citocinas , Pulmón , Microglía , Neumonía , Citocinas/metabolismo , Pulmón/metabolismo , COVID-19 , Encéfalo , Autopsia , Humanos , Ratones , Disfunción Cognitiva , Técnica del Anticuerpo Fluorescente , Neumonía/metabolismo , Interleucina-1beta/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
12.
medRxiv ; 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38370841

RESUMEN

Rationale: Critically ill patients who develop invasive pulmonary aspergillosis (IPA) have high mortality rates despite antifungal therapy. Diagnosis is difficult in these patients. Bronchoalveolar lavage (BAL) fluid galactomannan (GM) is a helpful marker of infection, although the optimal cutoff for IPA is unclear. We aimed to evaluate the BAL fluid GM and fungal culture results, demographics, and outcomes among a large cohort of mechanically ventilated patients with suspected pneumonia. Methods: A single-center cohort study of patients enrolled in the Successful Clinical Response in Pneumonia Therapy (SCRIPT) study from June 2018 to March 2023. Demographics, BAL results, and outcomes data were extracted from the electronic health record and compared between groups of patients who grew Aspergillus on a BAL fluid culture, those who had elevated BAL fluid GM levels (defined as >0.5 or >0.8) but did not grow Aspergillus on BAL fluid culture, and those with neither. Results: Of over 1700 BAL samples from 688 patients, only 18 BAL samples grew Aspergillus. Patients who had a BAL sample grow Aspergillus (n=15) were older (median 71 vs 62 years, p=0.023), had more days intubated (29 vs 11, p=0.002), and more ICU days (34 vs 15, p=0.002) than patients whose BAL fluid culture was negative for Aspergillus (n=672). The BAL fluid galactomannan level was higher from samples that grew Aspergillus on culture than those that did not (median ODI 7.08 vs 0.11, p<0.001), though the elevation of BAL fluid GM varied across BAL samples for patients who had serial sampling. Patients who grew Aspergillus had a similar proportion of underlying immunocompromise compared with the patients who did not, and while no statistically significant difference in overall unfavorable outcome, had longer duration of ventilation and longer ICU stays. Conclusions: In this large cohort of critically ill patients with a high number of BAL samples with GM levels, we found a relatively low rate of Aspergillus growth. Patients who eventually grew Aspergillus had inconsistently elevated BAL fluid GM, and many patients with elevated BAL fluid GM did not grow Aspergillus. These data suggest that the pre-test probability of invasive pulmonary aspergillosis should be considered low in a general ICU population undergoing BAL evaluation to define the etiology of pneumonia. Improved scoring systems are needed to enhance pre-test probability for diagnostic test stewardship purposes.

13.
Infect Dis Clin North Am ; 38(1): 51-63, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38280767

RESUMEN

There are several novel platforms that enhance detection of pathogens that cause common infections in the intensive care unit. These platforms have a sample to answer time of a few hours, are often higher yield than culture, and have the potential to improve antibiotic stewardship.


Asunto(s)
Antibacterianos , Programas de Optimización del Uso de los Antimicrobianos , Humanos , Antibacterianos/uso terapéutico , Prueba de Diagnóstico Rápido , Enfermedad Crítica , Unidades de Cuidados Intensivos
14.
Semin Respir Crit Care Med ; 45(2): 158-168, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38196061

RESUMEN

The microbiology of severe community acquired pneumonia (SCAP) has implications on management, clinical outcomes and public health policy. Therefore, knowledge of the etiologies of SCAP and methods to identify these microorganisms is key. Bacteria including Streptococcus pneumoniae, Staphylococcus aureus and Enterobacteriaceae continue to be important causes of SCAP. Viruses remain the most commonly identified etiology of SCAP. Atypical organisms are also important etiologies of SCAP and are critical to identify for public health. With the increased number of immunocompromised individuals, less common pathogens may also be found as the causative agent of SCAP. Traditional diagnostic tests, including semi-quantitative respiratory cultures, blood cultures and urinary antigens continue to hold an important role in the evaluation of patients with SCAP. Many of the limitations of the aforementioned tests are addressed by rapid, molecular diagnostic tests. Molecular diagnostics utilize culture-independent technology to identify species-specific genetic sequences. These tests are often semi-automated and provide results within hours, which provides an opportunity for expedient antibiotic stewardship. The existing literature suggests molecular diagnostic techniques may improve antibiotic stewardship in CAP, and future research should investigate optimal methods for implementation of these assays into clinical practice.


Asunto(s)
Infecciones Comunitarias Adquiridas , Neumonía , Virus , Humanos , Neumonía/diagnóstico , Neumonía/microbiología , Streptococcus pneumoniae , Enterobacteriaceae , Staphylococcus aureus , Infecciones Comunitarias Adquiridas/diagnóstico , Infecciones Comunitarias Adquiridas/microbiología
15.
Clin Microbiol Infect ; 30(2): 162-164, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37429434

RESUMEN

Meropenem therapy will be open-label, while tobramycin or placebo will be administered in a double-blind fashion. The primary trial endpoint will be a composite hierarchical outcome of 1) 28-day all-cause mortality, 2) ventilator-free days, and 3) modified time to clinical stability, evaluated using a win ratio methodology (see below). Secondary trial outcomes will include frequency of safety events (acute kidney injury), resolution of circulatory shock, recurrent HABP, and emergence of meropenem resistance both during treatment and in cases of recurrent infection. Using simulation studies to inform sample size calculations, we estimate that recruitment of 130 patients per treatment arm would provide at least 80% power to detect a win ratio of 1.50 while preserving a two-sided type 1 error rate of 0.05.


Asunto(s)
Antiinfecciosos , Neumonía Asociada a la Atención Médica , Neumonía Bacteriana , Infecciones por Pseudomonas , Humanos , Antibacterianos/uso terapéutico , Antiinfecciosos/uso terapéutico , Neumonía Asociada a la Atención Médica/tratamiento farmacológico , Hospitales , Meropenem/uso terapéutico , Neumonía Bacteriana/tratamiento farmacológico , Neumonía Bacteriana/microbiología , Pseudomonas aeruginosa , Infecciones por Pseudomonas/tratamiento farmacológico , Ensayos Clínicos como Asunto
16.
Nat Commun ; 14(1): 7962, 2023 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-38042959

RESUMEN

Klebsiella pneumoniae has been classified into two types, classical K. pneumoniae (cKP) and hypervirulent K. pneumoniae (hvKP). cKP isolates are highly diverse and important causes of nosocomial infections; they include globally disseminated antibiotic-resistant clones. hvKP isolates are sensitive to most antibiotics but are highly virulent, causing community-acquired infections in healthy individuals. The virulence phenotype of hvKP is associated with pathogenicity loci responsible for siderophore and hypermucoid capsule production. Recently, convergent strains of K. pneumoniae, which possess features of both cKP and hvKP, have emerged and are cause of much concern. Here, we screen the genomes of 2,608 multidrug-resistant K. pneumoniae isolates from the United States and identify 47 convergent isolates. We perform phenotypic and genomic characterization of 12 representative isolates. These 12 convergent isolates contain a variety of antimicrobial resistance plasmids and virulence plasmids. Most convergent isolates contain aerobactin biosynthesis genes and produce more siderophores than cKP isolates but not more capsule. Unexpectedly, only 1 of the 12 tested convergent isolates has a level of virulence consistent with hvKP isolates in a murine pneumonia model. These findings suggest that additional studies should be performed to clarify whether convergent strains are indeed more virulent than cKP in mouse and human infections.


Asunto(s)
Klebsiella pneumoniae , Factores de Virulencia , Humanos , Animales , Ratones , Virulencia/genética , Factores de Virulencia/genética , Antibacterianos/farmacología , Plásmidos , Sideróforos
17.
ERJ Open Res ; 9(6)2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37965226

RESUMEN

Some culture-negative, PCR-positive BAL samples may represent true infection. A subset of patients with a culture-negative, PCR-positive BAL result will have a subsequent BAL culture positive for the organism initially identified by PCR alone. https://bit.ly/3DWoFPo.

18.
Antimicrob Agents Chemother ; 67(12): e0072723, 2023 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-37975660

RESUMEN

It is unclear whether plasma is a reliable surrogate for target attainment in the epithelial lining fluid (ELF). The objective of this study was to characterize meropenem target attainment in plasma and ELF using prospective samples. The first 24-hour T>MIC was evaluated vs 1xMIC and 4xMIC targets at the patient (i.e., fixed MIC of 2 mg/L) and population [i.e., cumulative fraction of response (CFR) according to EUCAST MIC distributions] levels for both plasma and ELF. Among 65 patients receiving ≥24 hours of treatment, 40% of patients failed to achieve >50% T>4xMIC in plasma and ELF, and 30% of patients who achieved >50% T>4xMIC in plasma had <50% T>4xMIC in ELF. At 1xMIC and 4xMIC targets, 3% and 25% of patients with >95% T>MIC in plasma had <50% T>MIC in ELF, respectively. Those with a CRCL >115 mL/min were less likely to achieve >50%T>4xMIC in ELF (P < 0.025). In the population, CFR for Escherichia coli at 1xMIC and 4xMIC was >97%. For Pseudomonas aeruginosa, CFR was ≥90% in plasma and ranged 80%-85% in ELF at 1xMIC when a loading dose was applied. CFR was reduced in plasma (range: 75%-81%) and ELF (range: 44%-60%) in the absence of a loading dose at 1xMIC. At 4xMIC, CFR for P. aeruginosa was 60%-86% with a loading dose and 18%-62% without a loading dose. We found that plasma overestimated ELF target attainment inup to 30% of meropenem-treated patients, CRCL >115 mL/min decreased target attainment in ELF, and loading doses increased CFR in the population.


Asunto(s)
Antibacterianos , Infecciones por Pseudomonas , Humanos , Meropenem/uso terapéutico , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Estudios Prospectivos , Infecciones por Pseudomonas/tratamiento farmacológico , Plasma , Pruebas de Sensibilidad Microbiana
20.
bioRxiv ; 2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37546860

RESUMEN

Neurological impairment is the most common finding in patients with post-acute sequelae of COVID-19. Furthermore, survivors of pneumonia from any cause have an elevated risk of dementia1-4. Dysfunction in microglia, the primary immune cell in the brain, has been linked to cognitive impairment in murine models of dementia and in humans5. Here, we report a transcriptional response in human microglia collected from patients who died following COVID-19 suggestive of their activation by TNF-α and other circulating pro-inflammatory cytokines. Consistent with these findings, the levels of 55 alveolar and plasma cytokines were elevated in a cohort of 341 patients with respiratory failure, including 93 unvaccinated patients with COVID-19 and 203 patients with other causes of pneumonia. While peak levels of pro-inflammatory cytokines were similar in patients with pneumonia irrespective of etiology, cumulative cytokine exposure was higher in patients with COVID-19. Corticosteroid treatment, which has been shown to be beneficial in patients with COVID-196, was associated with lower levels of CXCL10, CCL8, and CCL2-molecules that sustain inflammatory circuits between alveolar macrophages harboring SARS-CoV-2 and activated T cells7. These findings suggest that corticosteroids may break this cycle and decrease systemic exposure to lung-derived cytokines and inflammatory activation of microglia in patients with COVID-19.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...