RESUMEN
BACKGROUND: Stress is a widespread phenomenon and reality of everyday life, entailing negative consequences for physical and psychological wellbeing. Previous studies have indicated that exposure to greenspaces and nature-based interventions are promising approaches to reducing stress and promoting restoration. However, an increasing percentage of the population lives in urban regions with limited opportunities to spend time in greenspaces. In addition, urban settings typically feature increased levels of noise, which represents a major environmental stressor. Although various studies have compared the effects of exposure to greenspaces versus urban built environments, evidence of the effects of noise in this context is very limited. Psychophysiological benefits of exposure to greenspaces compared to urban built environments reported in earlier studies might be less (or at least not only) due to features of the greenspaces than to additional stressors, such as road traffic noise in the urban built environment. Hence, differences in the effects attributed to greenness in previous studies may also be due to potentially detrimental noise effects in comparison settings. This paper reports the study protocol for a randomized, controlled intervention study comparing the effects of walking in forest versus urban built environments, taking road traffic noise exposure during walks in the respective settings into account. METHODS: The protocol envisages a field study employing a pretest-posttest design to compare the effects of 30-min walks in urban built environments and forests with different road traffic noise levels. Assessments will consist of self-reported measures, physiological data (salivary cortisol and skin conductance), an attention test, and noise, as well as greenness measurements. The outcomes will be restoration, stress, positive and negative affect, attention, rumination, and nature connectedness. DISCUSSION: The results will inform about the restorative effect of walking in general, of exposure to different types of environments, and to different noise levels in these sites. The study will provide insights into the benefits of walking and nature-based interventions, taking into account the potential detrimental effects of noise exposure. It will thus facilitate a better understanding of low-threshold interventions to prevent stress and foster wellbeing. TRIAL REGISTRATION: ISRCTN48943261 ; Registered 23.11.2023.
Asunto(s)
Entorno Construido , Bosques , Ruido del Transporte , Caminata , Adulto , Femenino , Humanos , Masculino , Respuesta Galvánica de la Piel/fisiología , Hidrocortisona/análisis , Ruido del Transporte/efectos adversos , Estrés Psicológico/psicología , Caminata/psicología , Caminata/estadística & datos numéricos , Ensayos Clínicos Controlados Aleatorios como AsuntoRESUMEN
BACKGROUND: Long-term exposure to transportation noise is related to cardio-metabolic diseases, with more recent evidence also showing associations with diabetes mellitus (DM) incidence. This study aimed to evaluate the association between transportation noise and DM mortality within the Swiss National Cohort. METHODS: During 15 years of follow-up (2001-2015; 4.14 million adults), over 72,000 DM deaths were accrued. Source-specific noise was calculated at residential locations, considering moving history. Multi-exposure, time-varying Cox regression was used to derive hazard ratios (HR, and 95%-confidence intervals). Models included road traffic, railway and aircraft noise, air pollution, and individual and area-level covariates including socio-economic position. Analyses included exposure-response modelling, effect modification, and a subset analysis around airports. The main findings were integrated into meta-analyses with published studies on mortality and incidence (separately and combined). RESULTS: HRs were 1.06 (1.05, 1.07), 1.02 (1.01, 1.03) and 1.01 (0.99, 1.02) per 10 dB day evening-night level (Lden) road traffic, railway and aircraft noise, respectively (adjusted model, including NO2). Splines suggested a threshold for road traffic noise (~ 46 dB Lden, well below the 53 dB Lden WHO guideline level), but not railway noise. Substituting for PM2.5, or including deaths with type 1 DM hardly changed the associations. HRs were higher for males compared to females, and in younger compared to older adults. Focusing only on type 1 DM showed an independent association with road traffic noise. Meta-analysis was only possible for road traffic noise in relation to mortality (1.08 [0.99, 1.18] per 10 dB, n = 4), with the point estimate broadly similar to that for incidence (1.07 [1.05, 1.09] per 10 dB, n = 10). Combining incidence and mortality studies indicated positive associations for each source, strongest for road traffic noise (1.07 [1.05, 1.08], 1.02 [1.01, 1.03], and 1.02 [1.00, 1.03] per 10 dB road traffic [n = 14], railway [n = 5] and aircraft noise [n = 5], respectively). CONCLUSIONS: This study provides new evidence that transportation noise is associated with diabetes mortality. With the growing evidence and large disease burden, DM should be viewed as an important outcome in the noise and health discussion.
Asunto(s)
Diabetes Mellitus , Exposición a Riesgos Ambientales , Ruido del Transporte , Ruido del Transporte/efectos adversos , Humanos , Suiza/epidemiología , Diabetes Mellitus/epidemiología , Diabetes Mellitus/mortalidad , Masculino , Femenino , Exposición a Riesgos Ambientales/efectos adversos , Estudios de Cohortes , Persona de Mediana Edad , Adulto , Anciano , AeronavesRESUMEN
BACKGROUND: Although plausible from a pathophysiological point of view, robust evidence for effects of transportation noise on mental health remains scarce. Meanwhile, psychiatric diseases are among the most prevalent noncommunicable diseases worldwide, and suicide as a mortality outcome highly connected to mental disorders presents a pressing public health issue. The aim of this study was to investigate the association between source-specific transportation noise, particulate matter (PM) air pollution, residential greenness, and suicide by means of a nationwide cohort study. METHODS: Road traffic, railway and aircraft noise exposure as well as exposure to air pollution [PM with aerodynamic diameter ≤2.5µm (PM2.5)] and greenness [normalized difference vegetation index (NDVI)] were linked to 5.1 million adults (age 15 y and older) in the Swiss National Cohort, accounting for their address history. Mean noise exposure in 5-y periods was calculated. Individuals were followed for up to 15 y (2001-2015). Time-varying Cox regression models were applied to deaths by suicide (excluding assisted suicide). Models included all three noise sources, PM2.5, and NDVI plus individual and spatial covariates, including socioeconomic status. Effect modification by sex, age, socioeconomic indicators, and degree of urbanization was explored. RESULTS: During the follow-up, there were 11,265 suicide deaths (10.4% poisoning, 33.3% hanging, 28.7% firearms, 14.7% falls). Road traffic and railway noise were associated with total suicides [hazard ratios: 1.040; 95% confidence interval (CI): 1.015, 1.065; and 1.022 (95% CI: 1.004, 1.041) per 10 dB day-evening-night level (Lden)], whereas for aircraft noise, a risk increase starting from 50 dB was masked by an inverse association in the very low exposure range (30-40 dB). Associations were stronger for females than males. The results were robust to adjustment for residential greenness and air pollution. CONCLUSION: In this longitudinal, nationwide cohort study, we report a robust association between exposure to road traffic and railway noise and risk of death by suicide after adjusting for exposure to air pollution and greenness. These findings add to the growing body of evidence that mental health disorders may be related to chronic transportation noise exposure. https://doi.org/10.1289/EHP11587.
Asunto(s)
Contaminación del Aire , Ruido del Transporte , Masculino , Adulto , Femenino , Humanos , Adolescente , Estudios de Cohortes , Ruido del Transporte/efectos adversos , Suiza/epidemiología , Estudios Prospectivos , Estudios Longitudinales , Material Particulado , Exposición a Riesgos AmbientalesRESUMEN
Urban areas are continuously growing, and densification is a frequent strategy to limit urban expansion. This generally entails a loss of green spaces (GSs) and an increase in noise pollution, which has negative effects on health. Within the research project RESTORE (Restorative potential of green spaces in noise-polluted environments), an extended cross-sectional field study in the city of Zurich, Switzerland, is conducted. The aim is to assess the relationship between noise annoyance and stress (self-perceived and physiological) as well as their association with road traffic noise and GSs. A representative stratified sample of participants from more than 5000 inhabitants will be contacted to complete an online survey. In addition to the self-reported stress identified by the questionnaire, hair cortisol and cortisone probes from a subsample of participants will be obtained to determine physiological stress. Participants are selected according to their dwelling location using a spatial analysis to determine exposure to different road traffic noise levels and access to GSs. Further, characteristics of individuals as well as acoustical and non-acoustical attributes of GSs are accounted for. This paper presents the study protocol and reports the first results of a pilot study to test the feasibility of the protocol.
Asunto(s)
Ruido del Transporte , Humanos , Proyectos Piloto , Estudios Transversales , Exposición a Riesgos Ambientales , Encuestas y CuestionariosRESUMEN
Environmental noise exposure has been shown to affect children's cognition, but the concept of cognition is multifaceted, and studies on associations with noise are still inconclusive and fragmented. We studied cognitive change within one year in 882 adolescents aged 10-17 years in response to road traffic noise exposure. Participants filled in a comprehensive questionnaire and underwent cognitive testing twice at an interval of one year. Figural and verbal memory was measured with the Intelligenz-Struktur-Test (IST), and concentration accuracy and constancy were measured with FAKT-II and d2 test. Exposure to noise and other environmental stressors were modelled for school and home location at baseline. Missing data was addressed with multiple imputation. Cross-sectional multilevel analyses and longitudinal change score analyses were performed. In cross-sectional analyses, figural memory was significantly reduced by -0.27 (95%CI -0.49,-0.04) units per 10 dB road traffic noise increase at home (Lden). Longitudinal analyses showed a significant reduction of concentration constancy Z-scores between baseline and follow-up by -0.13 (95%CI -0.25, 0.00) per 10 dB road traffic noise at home (Lden). Our study indicates that road traffic noise at home reduces cognitive performance in adolescents. Larger cohorts with longer follow-up time are needed to confirm these results.
Asunto(s)
Ruido del Transporte , Niño , Humanos , Adolescente , Estudios de Cohortes , Ruido del Transporte/efectos adversos , Estudios Transversales , Suiza/epidemiología , Cognición , Exposición a Riesgos AmbientalesRESUMEN
Current best-practice aircraft noise calculation models usually apply a so-called lateral attenuation term, i.e., an empirical formula to account for sound propagation phenomena in situations with grazing sound incidence. The recently developed aircraft noise model sonAIR features a physically based sound propagation core that claims to implicitly account for the phenomena condensed in this correction. The current study compares calculations for situations with grazing sound incidence of sonAIR and two best-practice models, AEDT and FLULA2, with measurements. The validation dataset includes on the one hand a large number of commercial aircraft during final approach and on the other hand departures of a jet fighter aircraft, with measurement distances up to 2.8 km. The comparisons show that a lateral attenuation term is justified for best-practice models, resulting in a better agreement with measurements. However, sonAIR yields better results than the two other models, with deviations on the order of only ±1 dB at all measurement locations. A further advantage of a physically based modeling approach, as used in sonAIR, is its ability to account for varying conditions affecting lateral attenuation, like systematic differences in the temperature stratification between day and night or ground cover other than grassland.
RESUMEN
Noise annoyance is usually estimated based on time-averaged noise metrics. However, such metrics ignore other potentially important acoustic characteristics, in particular the macro-temporal pattern of sounds as constituted by quiet periods (noise breaks). Little is known to date about its effect on noise annoyance and cognitive performance, e.g., during work. This study investigated how the macro-temporal pattern of road traffic noise affects short-term noise annoyance and cognitive performance in an attention-based task. In two laboratory experiments, participants worked on the Stroop task, in which performance relies predominantly on attentional functions, while being exposed to different road traffic noise scenarios. These were systematically varied in macro-temporal pattern regarding break duration and distribution (regular, irregular), and played back with moderate LAeq of 42-45 dB(A). Noise annoyance ratings were collected after each scenario. Annoyance was found to vary with the macro-temporal pattern: It decreased with increasing total duration of quiet periods. Further, shorter but more regular breaks were somewhat less annoying than longer but irregular breaks. Since Stroop task performance did not systematically vary with different noise scenarios, differences in annoyance are not moderated by experiencing worsened performance but can be attributed to differences in the macro-temporal pattern of road traffic noise.
Asunto(s)
Ruido del Transporte , Cognición , Exposición a Riesgos Ambientales , Humanos , Ruido del Transporte/efectos adversos , Análisis y Desempeño de TareasRESUMEN
The findings of environmental noise exposure and behavioural disorders in children and adolescents are inconclusive, and longitudinal studies are scarce. We studied the response of behaviour and behavioural change within one year in a cohort of 886 adolescents in Switzerland aged 10-17 years in response to road traffic noise exposure. Participants filled in a comprehensive questionnaire at baseline and follow-up. It included the Strengths and Difficulties Questionnaire (SDQ), which measures self-rated positive and negative behaviours in five scales. We modelled road traffic noise for participants' most exposed facade at home and school addresses in various metrics (Lden, Lnight, Lday, Intermittency Ratio and Number of events). We addressed missing data with multiple imputation and performed mixed linear cross-sectional analyses and longitudinal change score analyses. In cross-sectional analyses, peer relationship problems increased by 0.15 units (95%CI: 0.02, 0.27; scale range: 0-10) per 10 dB road traffic noise increase. In longitudinal analyses, increases in SDQ scales between baseline and follow-up were not related to noise exposure. This study suggests subtle associations between road traffic noise exposure and behaviour problems in adolescents, but longer follow-up times may be needed to observe longitudinal changes.
Asunto(s)
Ruido del Transporte , Problema de Conducta , Adolescente , Niño , Estudios de Cohortes , Estudios Transversales , Exposición a Riesgos Ambientales , Humanos , Ruido del Transporte/efectos adversosRESUMEN
There is a growing interest for commercial applications of Unmanned Aerial Vehicles, but important foundations for an assessment, among others about noise, are missing. This contribution specifically focuses on a method to measure and model the sound radiation of multicopters. The emission prediction is hereby based on measurements using a multiple regression approach. An important finding is that the directivity pattern is widely independent of the rotational speed of the rotors and of the flight procedure. Consequently, the directivity pattern can be determined for a stationary hover flight, which considerably simplifies the measurement procedure. In addition to a rotational speed-dependent sound emission model for hover flight, a multicopter-specific correction term is required to account for forward flight. The validity of this approach is demonstrated based on the field measurements of three different multicopter models.
Asunto(s)
Acústica , SonidoRESUMEN
BACKGROUND: Death from cardiovascular diseases (CVD) has been associated with transportation noise. This nationwide cohort, with state-of-the-art exposure assessment, evaluates these associations by noise source. METHODS: Road traffic, railway and aircraft noise for 2001 and 2011 were linked to 4.1 million adults in the Swiss National Cohort, accounting for address history. Mean noise exposure in 5-year periods was calculated. Time-varying Cox regression models, with age as timescale, were applied to all and cause-specific cardiovascular causes of death. Models included all three noise sources plus PM2.5, adjusted for individual and spatial covariates. Nighttime noise events for all sources combined (expressed as intermittency ratio or number of events) were considered in sensitivity analyses. Absolute excess risk was calculated by multiplying deaths/100,000 person-years by the excess risk (hazard ratio-1) within each age/sex group. RESULTS: During a 15-year follow-up, there were 277,506 CVD and 34,200 myocardial infarction (MI) deaths. Associations (hazard ratio; 95%-CIs) for road traffic, railway and aircraft noise and CVD mortality were 1.029 (1.024-1.034), 1.013 (1.010-1.017), and 1.003 (0.996-1.010) per 10 dB Lden, respectively. Associations for MI mortality were a respective 1.043 (1.029-1.058), 1.020 (1.010-1.030) and 1.040 (1.020-1.060) per 10 dB Lden. Blood pressure-related, ischemic heart disease, and all stroke mortality were significantly associated with road traffic and railway noise, while ischemic stroke mortality was associated with aircraft noise. Associations were mostly linear, often starting below 40 dB Lden for road traffic and railway noise. Higher levels of noise intermittency were also independently associated with each outcome. While the absolute number of deaths attributed to noise increased with age, the hazard ratios declined with age. Relative and absolute risk was higher in males compared to females. CONCLUSION: Independent of air pollution, transportation noise exposure is associated with all and cause-specific CVD mortality, with effects starting below current guideline limits.
Asunto(s)
Infarto del Miocardio , Ruido del Transporte , Adulto , Exposición a Riesgos Ambientales/estadística & datos numéricos , Femenino , Estudios de Seguimiento , Humanos , Masculino , Ruido del Transporte/efectos adversos , Estudios Prospectivos , Suiza/epidemiologíaRESUMEN
Ambient air pollution is the leading cause of environmental mortality and morbidity worldwide. However, the individual contributions to acute mortality of traffic-related air pollutants such as nitrogen dioxide (NO2) and fine particulate matter (PM2.5) are still debated. We conducted a time-stratified case-crossover study for a population located around Zurich airport in Switzerland, including 24,886 adult cardiovascular deaths from the Swiss National Cohort. We estimated the risk of cause-specific cardiovascular mortality associated with daily NO2 and PM2.5 concentrations at home using distributed lag models up to 7 days preceding death, adjusted for daily temperature, precipitation, acute night-time aircraft noise, firework celebrations, and holidays. Cardiovascular mortality was associated with NO2, whereas the association with PM2.5 disappeared upon adjustment for NO2. The strongest association was observed between NO2 and ischemic stroke mortality (odds ratio = 1.55 per 10 µg/m3, 95% confidence intervals = 1.20-2.00). Cause-specific mortality analyses showed differences in terms of delayed effect: odds ratios were highest at 1-3 days after exposure for most outcomes but at lags of 3-5 days for heart failure. Individual vulnerabilities to NO2 associated cardiovascular mortality also varied by cause of death, possibly highlighting the role of different behaviours and risk factors in the most susceptible groups. The risk of cardiovascular mortality was also increased on firework days and after public holidays, independent from NO2 and PM2.5 concentrations. This study confirms the association between ambient NO2, as a marker for primary emissions, and acute cardiovascular mortality in a specific setting around a major airport. Future research should clarify the role of additional air pollutants including ultra-fine particles on cardiovascular diseases to inform most efficient control measures.
Asunto(s)
Enfermedades Cardiovasculares , Dióxido de Nitrógeno , Adulto , Aeronaves , Estudios Cruzados , Exposición a Riesgos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/análisis , Humanos , Dióxido de Nitrógeno/análisis , Material Particulado/análisisRESUMEN
The number of operations of Unmanned Aerial Vehicles (UAV), commonly referred to as "drones", has strongly increased in the past and is likely to further grow in the future. Therefore, drones are becoming a growing new source of environmental noise pollution, and annoyance reactions to drone noise are likely to occur in an increasing share of the population. To date, research on drone noise emission characteristics, and in particular also on health impacts, seems scarce, but systematic overviews on these topics are missing. The objective of this study was to establish a systematic literature review on drone noise emissions and noise effects on humans. The paper presents the methodology of the systematic reviews performed separately for noise emission and noise effects, assembles current literature, gives an overview on the state of knowledge, and identifies research gaps. Current literature suggests that drone noise is substantially more annoying than road traffic or aircraft noise due to special acoustic characteristics such as pure tones and high-frequency broadband noise. A range of open questions remains to be tackled by future studies.
Asunto(s)
Aeronaves , Ruido , Acústica , Humanos , Ruido/efectos adversosRESUMEN
Since the 2003 heatwave in Europe, evidence has been rapidly increasing on the association between extreme temperature and all-cause mortality. Little is known, however, about cause-specific cardiovascular mortality, effect modification by air pollution and aircraft noise, and which population groups are the most vulnerable to extreme temperature. We conducted a time-stratified case-crossover study in Zurich, Switzerland, including all adult cardiovascular deaths between 2000 and 2015 with precise individual exposure estimates at home location. We estimated the risk of 24,884 cardiovascular deaths associated with heat and cold using distributed non-linear lag models. We investigated potential effect modification of temperature-related mortality by fine particles, nitrogen dioxide, and night-time aircraft noise and performed stratified analyses across individual and social characteristics. We found increased risk of mortality for heat (odds ratio OR = 1.28 [95% confidence interval: 1.11-1.49] for 99th percentile of daily Tmean (24 °C) versus optimum temperature at 20 °C) and cold (OR = 1.15 [0.95-1.39], 5th percentile of daily Tmean (-3 °C) versus optimum temperature at 20 °C). Heat-related mortality was particularly strong for myocardial infarctions and hypertension related deaths, and among older women (>75 years). Analysis of effect modification also indicated that older women with lower socio-economic position and education are at higher risk for heat-related mortality. PM2.5 increased the risk of heat-related mortality for heart failure, but not all-cause cardiovascular mortality. This study provides useful information for preventing cause-specific cardiovascular temperature-related mortality in moderate climate zones comparable to Switzerland.
Asunto(s)
Contaminación del Aire , Enfermedades Cardiovasculares , Adulto , Anciano , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Frío , Estudios Cruzados , Femenino , Calor , Humanos , Mortalidad , Suiza/epidemiología , TemperaturaRESUMEN
AIMS: It is unclear whether night-time noise events, including from aeroplanes, could trigger a cardiovascular death. In this study, we investigate the potential acute effects of aircraft noise on mortality and the specific role of different night-time exposure windows by means of a case-crossover study design. METHODS AND RESULTS: We selected 24 886 cases of death from cardiovascular disease (CVD) from the Swiss National Cohort around Zürich Airport between 2000 and 2015. For night-time deaths, exposure levels 2 h preceding death were significantly associated with mortality for all causes of CVD [OR = 1.44 (1.03-2.04) for the highest exposure group (LAeq > 50 dB vs. <20 dB)]. Most consistent associations were observed for ischaemic heart diseases, myocardial infarction, heart failure, and arrhythmia. Association were more pronounced for females (P = 0.02) and for people living in areas with low road and railway background noise (P = 0.01) and in buildings constructed before 1970 (P = 0.36). We calculated a population attributable fraction of 3% in our study population. CONCLUSION: Our findings suggest that night-time aircraft noise can trigger acute cardiovascular mortality. The association was similar to that previously observed for long-term aircraft noise exposure.
Asunto(s)
Ruido del Transporte , Aeronaves , Aeropuertos , Estudios Cruzados , Exposición a Riesgos Ambientales , Femenino , Humanos , Ruido del Transporte/efectos adversosRESUMEN
Prospective evidence on the risk of depression in relation to transportation noise exposure and noise annoyance is limited and mixed. We aimed to investigate the associations of long-term exposure to source-specific transportation noise and noise annoyance with incidence of depression in the SAPALDIA (Swiss cohort study on air pollution and lung and heart diseases in adults) cohort. We investigated 4,581 SAPALDIA participants without depression in the year 2001/2002. Corresponding one-year mean road, railway and aircraft day-evening-night noise (Lden) was calculated at the most exposed façade of the participants' residential floors, and transportation noise annoyance was assessed on an 11-point scale. Incident cases of depression were identified in 2010/2011, and comprised participants reporting physician diagnosis, intake of antidepressant medication or having a short form-36 mental health score < 50. We used robust Poisson regressions to estimate the mutually adjusted relative risks (RR) and 95% confidence intervals (CI) of depression, independent of traffic-related air pollution and other potential confounders. Incidence of depression was 11 cases per 1,000 person-years. In single exposure models, we observed positive but in part, statistically non-significant associations (per 10 dB) of road traffic Lden [RR: 1.06 (0.93, 1.22)] and aircraft Lden [RR: 1.19 (0.93, 1.53)], and (per 1-point difference) of noise annoyance [RR: 1.05 (1.02, 1.08)] with depression risk. In multi-exposure model, noise annoyance effect remained unchanged, with weaker effects of road traffic Lden [(RR: 1.02 (0.89, 1.17)] and aircraft Lden [(RR: 1.17 (0.90, 1.50)]. However, there were statistically significant indirect effects of road traffic Lden [(ß: 0.02 (0.01, 0.03)] and aircraft Lden [ß: 0.01 (0.002, 0.02)] via noise annoyance. There were no associations with railway Lden in the single and multi-exposure models [(RRboth models: 0.88 (0.75, 1.03)]. We made similar findings among 2,885 non-movers, where the effect modification and cumulative risks were more distinct. Noise annoyance effect in non-movers was stronger among the insufficiently active (RR: 1.09; 95%CI: 1.02, 1.17; pinteraction = 0.07) and those with daytime sleepiness [RR: 1.07 (1.02, 1.12); pinteraction = 0.008]. Cumulative risks of Lden in non-movers showed additive tendencies for the linear cumulative risk [(RRper 10dB of combined sources: 1.31 (0.90, 1.91)] and the categorical cumulative risk [(RRtriple- vs. zero-source ≥45 dB: 2.29 (1.02, 5.14)], and remained stable to noise annoyance. Transportation noise level and noise annoyance may jointly and independently influence the risk of depression. Combined long-term exposures to noise level seems to be most detrimental, largely acting via annoyance. The moderation of noise annoyance effect by daytime sleepiness and physical activity further contribute to clarifying the involved mechanisms. More evidence is needed to confirm these findings for effective public health control of depression and noise exposure burden.
Asunto(s)
Ruido del Transporte , Adulto , Estudios de Cohortes , Depresión/epidemiología , Depresión/etiología , Exposición a Riesgos Ambientales , Humanos , Incidencia , Ruido del Transporte/efectos adversos , Estudios ProspectivosRESUMEN
Noise exposure is affecting health-related quality of life (HRQoL). There are many modelling approaches linking specific noise sources with single health-related outcomes. However, an integrated approach is missing taking into account measured levels as well as noise annoyance and sensitivity and assessing their independent association with HRQoL domains. Therefore, we investigated the predictive association of most common transportation noise sources (aircraft, railway and road traffic) as well as transportation noise annoyance and noise sensitivity with HRQoL using data from SAPALDIA (Swiss Cohort Study on Air Pollution and Lung and Heart Diseases in Adults). We assessed 2035 subjects, who participated in the second and third wave of SAPALDIA (3&4) and had complete information on exposure, outcome and covariates. At SAPALDIA3, we calculated annual means (Lden) of source-specific transportation noise exposure at the most exposed facade of participant's dwelling floor height. Participants reported noise annoyance on the widely used 11-point ICBEN scale and answered to 10 questions assessing individual noise sensitivity. To assess the potentially predictive effect of these noise exposures, HRQoL was assessed about 8 years later (SAPALDIA4) using the SF-36. We performed predictive multiple quantile regression models to elucidate associations of noise parameters measured at SAPALDIA3 with median SF-36 scores at SAPALDIA4. Source-specific transportation noise exposures showed few yet not consistent associations with HRQoL scores. We observed statistically significant negative associations of transportation noise annoyance with HRQoL scores covering mental health components (adjusted difference in SF-36 mental health score between highest vs. lowest annoyance tertile: -2.54 (95%CI: -3.89; -1.20). Noise sensitivity showed strongest and most consistent associations with HRQoL scores covering both general and mental health components (adjusted difference in SF-36 scores between highest vs. lowest sensitivity tertile: Mental health -5.96 (-7.57; -4.36); general health -5.16 (-7.08; -3.24)). Within all noise parameters, we predominantly observed negative associations of noise sensitivity with HRQoL attaining a magnitude of potential clinical relevance. This implies that factors other than transportation noise exposure may be relevant for this exposure-outcome relation. Nonetheless, transportation noise annoyance showed relevant associations with mental health components, indicating a negative association of transportation noise with HRQoL.
Asunto(s)
Contaminación del Aire , Ruido del Transporte , Adulto , Estudios de Cohortes , Exposición a Riesgos Ambientales , Humanos , Ruido del Transporte/efectos adversos , Calidad de VidaRESUMEN
BACKGROUND: In recent years, residential green and availability of neighbourhood green spaces came into focus as a potential means to reduce transportation noise annoyance. Literature suggests that various characteristics of residential green may play a role, namely, greenness of the residential areas as quantified by the normalized difference vegetation index (NDVI), visible vegetation from home, and the presence of public green spaces as identified by land use classification data (LU-green), as well as their accessibility and noise pollution (i.e., transportation noise exposure within green areas, how loud/quiet they are). So far, studies mostly focused on road traffic noise in urban areas. OBJECTIVE: We investigated the effects of residential green on noise annoyance, accounting for different transportation noise sources as well as for the degree of urbanisation. METHODS: We complemented the data set of the recent Swiss SiRENE survey on road traffic, railway and aircraft noise annoyance with a wide range of "green" metrics, and investigated their association with annoyance by means of logistic regression analysis (generalized estimating equations). RESULTS: Increasing residential green was found to be associated with reduced road traffic and railway noise annoyance, but increased aircraft noise annoyance. The overall effect corresponded to equivalent level reductions of about 6 dB for road traffic and 3 dB for railway noise, but to an increase of about 10 dB for aircraft noise, when residential green increased from "not much green" (5th percentile of the study sample distribution) to "a lot of green" (95th percentile). Overall, NDVI and LU-green were particularly strongly linked to annoyance. The effects of visible vegetation from home and accessibility and/or quietness of green spaces were, overall, less strong, but depended on the degree of urbanisation. For road traffic noise, visible vegetation and accessibility of green spaces seem to particularly strongly reduce annoyance in cities, while quiet green spaces are more effective in rural areas. CONCLUSIONS: Our study emphasizes that residential green should be fostered by city planners, particularly in densely populated areas.
Asunto(s)
Exposición a Riesgos Ambientales , Ruido del Transporte , Aeronaves , Ciudades , Ruido del Transporte/efectos adversos , TransportesRESUMEN
BACKGROUND: Few epigenome-wide association studies (EWAS) on air pollutants exist, and none have been done on transportation noise exposures, which also contribute to environmental burden of disease. OBJECTIVE: We performed mutually independent EWAS on transportation noise and air pollution exposures. METHODS: We used data from two time points of the Swiss Cohort Study on Air Pollution and Lung and Heart Diseases in Adults (SAPALDIA) from 1,389 participants contributing 2,542 observations. We applied multiexposure linear mixed-effects regressions with participant-level random intercept to identify significant Cytosine-phosphate-Guanine (CpG) sites and differentially methylated regions (DMRs) in relation to 1-y average aircraft, railway, and road traffic day-evening-night noise (Lden); nitrogen dioxide (NO2); and particulate matter (PM) with aerodynamic diameter <2.5µm (PM2.5). We performed candidate (CpG-based; cross-systemic phenotypes, combined into "allostatic load") and agnostic (DMR-based) pathway enrichment tests, and replicated previously reported air pollution EWAS signals. RESULTS: We found no statistically significant CpGs at false discovery rate <0.05. However, 14, 48, 183, 8, and 71 DMRs independently associated with aircraft, railway, and road traffic Lden; NO2; and PM2.5, respectively, with minimally overlapping signals. Transportation Lden and air pollutants tendentially associated with decreased and increased methylation, respectively. We observed significant enrichment of candidate DNA methylation related to C-reactive protein and body mass index (aircraft, road traffic Lden, and PM2.5), renal function and "allostatic load" (all exposures). Agnostic functional networks related to cellular immunity, gene expression, cell growth/proliferation, cardiovascular, auditory, embryonic, and neurological systems development were enriched. We replicated increased methylation in cg08500171 (NO2) and decreased methylation in cg17629796 (PM2.5). CONCLUSIONS: Mutually independent DNA methylation was associated with source-specific transportation noise and air pollution exposures, with distinct and shared enrichments for pathways related to inflammation, cellular development, and immune responses. These findings contribute in clarifying the pathways linking these exposures and age-related diseases but need further confirmation in the context of mediation analyses. https://doi.org/10.1289/EHP6174.
Asunto(s)
Contaminación del Aire/estadística & datos numéricos , Exposición a Riesgos Ambientales/estadística & datos numéricos , Ruido del Transporte/estadística & datos numéricos , Adulto , Contaminantes Atmosféricos , Aeronaves , Estudios de Cohortes , ADN , Metilación de ADN/fisiología , Femenino , Humanos , Modelos Lineales , Masculino , Persona de Mediana Edad , Dióxido de Nitrógeno , Material ParticuladoRESUMEN
Many countries around the world have chosen lockdown and restrictions on people's mobility as the main strategies to combat the COVID-19 pandemic. These actions have significantly affected environmental noise and modified urban soundscapes, opening up an unprecedented opportunity for research in the field. In order to enable these investigations to be carried out in a more harmonized and consistent manner, this paper makes a proposal for a set of indicators that will enable to address the challenge from a number of different approaches. It proposes a minimum set of basic energetic indicators, and the taxonomy that will allow their communication and reporting. In addition, an extended set of descriptors is outlined which better enables the application of more novel approaches to the evaluation of the effect of this new soundscape on people's subjective perception.