Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Thromb Haemost ; 2024 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-39423958

RESUMEN

BACKGROUND: Phosphatidylserine (PS) is a procoagulant phospholipid enriched on surfaces of activated vascular cells including platelets, endothelium, monocytes, and microvesicles. As a molecular driver of thrombosis accessible to drug blockade, PS is an attractive pharmacologic target for modulating thrombogenesis, with potentially reduced bleeding risk compared to anticoagulant and antiplatelet therapies. OBJECTIVES: Test antithrombotic capabilities of a liposomal formulation, Zn-dipicolylamine cyanine-3[22,22]/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (molar ratio, 3:97), designated as DPAL, which we previously described binds selectively to PS-enriched cell surfaces, compared with effects on bleeding, in mouse models. METHODS: PS-dependent DPAL binding to human and murine platelets was tested in vitro. Thrombosis and bleeding after DPAL intravenous administration were tested in C57Bl/6J mice following FeCl3 carotid arterial injury and tail tip amputation, respectively. Incorporation in hemostatic clots was investigated in the cremaster muscle laser injury model. Toxicity was tested by direct exposure to human endothelial cell cultures. RESULTS: DPAL bound agonist-stimulated, PS-positive human and murine platelets, blocked by Annexin V or Ano6 deletion, which ablate PS exposure. DPAL prolonged prothrombin time, but did not prevent thrombin-induced fibrinogen receptor activation or aggregation, nor alter blood cell counts including platelets. Following arteriolar laser injury, DPAL bound wound surfaces and edges without destabilizing plugs. DPAL dose-dependently blocked FeCl3-induced arterial thrombosis but did not substantially increase bleeding, or induce endothelial cell death. CONCLUSION: DPAL reduces thrombogenesis with minimal effects on bleeding in mouse models via selective binding to PS. DPAL may support novel approaches to modulate pathogenic thrombin generation with improved safety profiles in multiple contexts.

2.
Blood Adv ; 8(6): 1550-1566, 2024 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-38163324

RESUMEN

ABSTRACT: Mechanisms of proteostasis in anucleate circulating platelets are unknown and may regulate platelet function. We investigated the hypothesis that plasma-borne growth factors/hormones (GFHs) maintain constitutive translation in circulating platelets to facilitate reactivity. Bio-orthogonal noncanonical amino acid tagging (BONCAT) coupled with liquid chromatography-tandem mass spectrometry analysis revealed constitutive translation of a broad-spectrum translatome in human platelets dependent upon plasma or GFH exposure, and in murine circulation. Freshly isolated platelets from plasma showed homeostatic activation of translation-initiation signaling pathways: phosphorylation of p38/ERK upstream kinases, essential intermediate MNK1/2, and effectors eIF4E/4E-BP1. Plasma starvation led to loss of pathway phosphorylation, but it was fully restored with 5-minute stimulation by plasma or GFHs. Cycloheximide or puromycin infusion suppressed ex vivo platelet GpIIb/IIIa activation and P-selectin exposure with low thrombin concentrations and low-to-saturating concentrations of adenosine 5'-diphosphate (ADP) or thromboxane analog but not convulxin. ADP-induced thromboxane generation was blunted by translation inhibition, and secondary-wave aggregation was inhibited in a thromboxane-dependent manner. Intravenously administered puromycin reduced injury-induced clot size in cremaster muscle arterioles, and delayed primary hemostasis after tail tip amputation but did not delay neither final hemostasis after subsequent rebleeds, nor final hemostasis after jugular vein puncture. In contrast, these mice were protected from injury-induced arterial thrombosis and thrombin-induced pulmonary thromboembolism (PE), and adoptive transfer of translation-inhibited platelets into untreated mice inhibited arterial thrombosis and PE. Thus, constitutive plasma GFH-driven translation regulates platelet G protein-coupled receptor reactivity to balance hemostasis and thrombotic potential.


Asunto(s)
Agregación Plaquetaria , Trombosis , Ratones , Humanos , Animales , Trombina/metabolismo , Tromboxanos , Puromicina/efectos adversos
3.
PLoS One ; 16(12): e0261633, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34936674

RESUMEN

We investigated the contributions of platelet microRNAs (miRNAs) to the rate of growth and regulation of gene expression in primary ectopic tumors using mouse models. We previously identified an inhibitory role for platelets in solid tumor growth, mediated by tumor infiltration of platelet microvesicles (microparticles) which are enriched in platelet-derived miRNAs. To investigate the specific roles of platelet miRNAs in tumor growth models, we implanted pancreatic ductal adenocarcinoma cells as a bolus into mice with megakaryocyte-/platelet-specific depletion of mature miRNAs. We observed an ~50% increase in the rate of growth of ectopic primary tumors in these mice compared to controls including at early stages, associated with reduced apoptosis in the tumors, in particular in tumor cells associated with platelet microvesicles-which were depleted of platelet-enriched miRNAs-demonstrating a specific role for platelet miRNAs in modulation of primary tumor growth. Differential expression RNA sequencing of tumor cells isolated from advanced primary tumors revealed a broad cohort of mRNAs modulated in the tumor cells as a function of host platelet miRNAs. Altered genes comprised 548 up-regulated transcripts and 43 down-regulated transcripts, mostly mRNAs altogether spanning a variety of growth signaling pathways-notably pathways related to epithelial-mesenchymal transition-in tumor cells from platelet miRNA-deleted mice compared with those from control mice. Tumors in platelet miRNA-depleted mice showed more sarcomatoid growth and more advanced tumor grade, indicating roles for host platelet miRNAs in tumor plasticity. We further validated increased protein expression of selected genes associated with increased cognate mRNAs in the tumors due to platelet miRNA depletion in the host animals, providing proof of principle of widespread effects of platelet miRNAs on tumor cell functional gene expression in primary tumors in vivo. Together, these data demonstrate that platelet-derived miRNAs modulate solid tumor growth in vivo by broad-spectrum restructuring of the tumor cell transcriptome.


Asunto(s)
Plaquetas/metabolismo , MicroARNs/genética , Neoplasias Pancreáticas/genética , ARN Mensajero/genética , Animales , Plaquetas/patología , Carcinogénesis/genética , Carcinogénesis/patología , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Ratones , Ratones Endogámicos C57BL , Neoplasias Pancreáticas/patología , Transcriptoma
4.
Platelets ; 32(6): 794-806, 2021 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-32838617

RESUMEN

We sought novel approaches to improve transfection efficiencies of microRNAs (miRNAs) in platelets, and to apply these approaches to investigate the roles of miRNAs in regulating signal-activated protein translation and functional effects. We found that ex vivo human platelets support gymnosis---internalization of ectopic miRNAs following co-incubation in the absence of conventional transfection reagents or schemes---and subsequently incorporate transfected miRNA into ARGONAUTE2 (AGO2)-based RNA-induced silencing complexes (RISC). Thrombin/fibrinogen stimulation activated translation of miR-223-3p target SEPTIN2, which was suppressed by miR-223-3p transfection in an AGO2/RISC-dependent manner. Thrombin/fibrinogen-induced exosome and microvesicle generation was inhibited by miR-223-3p transfection, and this effect was reversed with a RISC inhibitor. Platelet gymnosis of naked miRNAs appeared to be mediated in part by endocytic pathways including clathrin-dependent and fluid-phase endocytosis and caveolae. These results demonstrate the ability of ex vivo platelets to internalize ectopic miRNAs by unassisted transfection, and utilize them to modulate signal-activated translation and platelet function. Our results identify new roles for miR-223-3p in extracellular vesicle generation in stimulated platelets. High-efficiency gymnotic transfection of miRNAs in ex vivo platelets may be a broadly useful tool for exploring molecular genetic regulation of platelet function.


Asunto(s)
Plaquetas/metabolismo , MicroARNs/metabolismo , Activación Plaquetaria/inmunología , Pruebas de Función Plaquetaria/métodos , Animales , Humanos , Ratones , Transfección
5.
Blood Adv ; 4(1): 76-86, 2020 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-31899801

RESUMEN

G protein-coupled receptors (GPCRs) mediate the majority of platelet activation in response to agonists. However, questions remain regarding the mechanisms that provide negative feedback toward activated GPCRs to limit platelet activation and thrombus formation. Here we provide the first evidence that GPCR kinase 6 (GRK6) serves this role in platelets, using GRK6-/- mice generated by CRISPR-Cas9 genome editing to examine the consequences of GRK6 knockout on GPCR-dependent signaling. Hemostatic thrombi formed in GRK6-/- mice are larger than in wild-type (WT) controls during the early stages of thrombus formation, with a rapid increase in platelet accumulation at the site of injury. GRK6-/- platelets have increased platelet activation, but in an agonist-selective manner. Responses to PAR4 agonist or adenosine 5'-diphosphate stimulation in GRK6-/- platelets are increased compared with WT littermates, whereas the response to thromboxane A2 (TxA2) is normal. Underlying these changes in GRK6-/- platelets is an increase in Ca2+ mobilization, Akt activation, and granule secretion. Furthermore, deletion of GRK6 in human MEG-01 cells causes an increase in Ca2+ response and PAR1 surface expression in response to thrombin. Finally, we show that human platelet activation in response to thrombin causes an increase in binding of GRK6 to PAR1, as well as an increase in the phosphorylation of PAR1. Deletion of GRK6 in MEG-01 cells causes a decrease in PAR1 phosphorylation. Taken together, these data show that GRK6 regulates the hemostatic response to injury through PAR- and P2Y12-mediated effects, helping to limit the rate of platelet activation during thrombus growth and prevent inappropriate platelet activation.


Asunto(s)
Plaquetas , Hemostáticos , Animales , Ratones , Activación Plaquetaria , Receptores de Trombina , Transducción de Señal
6.
Blood ; 130(5): 567-580, 2017 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-28500171

RESUMEN

Platelet-derived microparticles (PMPs) are associated with enhancement of metastasis and poor cancer outcomes. Circulating PMPs transfer platelet microRNAs (miRNAs) to vascular cells. Solid tumor vasculature is highly permeable, allowing the possibility of PMP-tumor cell interaction. Here, we show that PMPs infiltrate solid tumors in humans and mice and transfer platelet-derived RNA, including miRNAs, to tumor cells in vivo and in vitro, resulting in tumor cell apoptosis. MiR-24 was a major species in this transfer. PMP transfusion inhibited growth of both lung and colon carcinoma ectopic tumors, whereas blockade of miR-24 in tumor cells accelerated tumor growth in vivo, and prevented tumor growth inhibition by PMPs. Conversely, Par4-deleted mice, which had reduced circulating microparticles (MPs), supported accelerated tumor growth which was halted by PMP transfusion. PMP targeting was associated with tumor cell apoptosis in vivo. We identified direct RNA targets of platelet-derived miR-24 in tumor cells, which included mitochondrial mt-Nd2, and Snora75, a noncoding small nucleolar RNA. These RNAs were suppressed in PMP-treated tumor cells, resulting in mitochondrial dysfunction and growth inhibition, in an miR-24-dependent manner. Thus, platelet-derived miRNAs transfer in vivo to tumor cells in solid tumors via infiltrating MPs, regulate tumor cell gene expression, and modulate tumor progression. These findings provide novel insight into mechanisms of horizontal RNA transfer and add multiple layers to the regulatory roles of miRNAs and PMPs in tumor progression. Plasma MP-mediated transfer of regulatory RNAs and modulation of gene expression may be a common feature with important outcomes in contexts of enhanced vascular permeability.


Asunto(s)
Plaquetas/metabolismo , Micropartículas Derivadas de Células/metabolismo , Neoplasias del Colon/metabolismo , Neoplasias Pulmonares/metabolismo , MicroARNs/metabolismo , Animales , Micropartículas Derivadas de Células/trasplante , Neoplasias del Colon/genética , Neoplasias del Colon/patología , Neoplasias del Colon/terapia , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/terapia , Ratones , NADH Deshidrogenasa/genética , NADH Deshidrogenasa/metabolismo , Metástasis de la Neoplasia , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Receptores Proteinasa-Activados
7.
Anticancer Res ; 36(10): 5053-5061, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27798864

RESUMEN

The goal of this study was to develop combinatorial application of two drugs currently either in active use as anticancer agents (rapamycin) or in clinical trials (OTX008) as a novel strategy to inhibit Harvey RAS (HRAS)-driven tumor progression. HRAS anchored to the plasma membrane shuttles from the lipid ordered (Lo) domain to the lipid ordered/lipid disordered border upon activation, and retention of HRAS at these sites requires galectin-1. We recently showed that genetically enforced Lo sequestration of HRAS inhibited mitogen-activated protein kinase (MAPK) signaling, but not phoshatidylinositol 3-kinase (PI3K) activation. Here we show that inhibition of galectin-1 with OTX008 sequestered HRAS in the Lo domain, blocked HRAS-mediated MAPK signaling, and attenuated HRAS-driven tumor progression in mice. HRAS-driven tumor growth was also attenuated by treatment with mammalian target of rapamycin (mTOR) inhibitor rapamycin, and this effect was further enhanced in tumors driven by Lo-sequestered HRAS. These drugs also revealed bidirectional cross-talk in HRAS pathways. Moreover, dual pathway inhibition with OTX008 and rapamycin resulted in nearly complete ablation of HRAS-driven tumor growth. These findings indicate that membrane microdomain sequestration of HRAS with galectin-1 inhibition, coupled with mTOR inhibition, may support a novel therapeutic approach to treat HRAS-mutant cancer.


Asunto(s)
Antineoplásicos/farmacología , Calixarenos/farmacología , Galectina 1/antagonistas & inhibidores , Neoplasias/patología , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Sirolimus/farmacología , Animales , Antineoplásicos/uso terapéutico , Calixarenos/uso terapéutico , Femenino , Proteínas Fluorescentes Verdes/genética , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Ratones Desnudos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Complejos Multiproteicos/antagonistas & inhibidores , Complejos Multiproteicos/metabolismo , Células 3T3 NIH , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Sirolimus/uso terapéutico , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/metabolismo
8.
Blood ; 127(14): 1743-51, 2016 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-26773046

RESUMEN

Human platelets contain microRNAs (miRNAs) and miRNA processing machinery, but their contribution to platelet function remains incompletely understood. Here, we show that murine megakaryocyte (MK)-specific knockdown of Dicer1, the ribonuclease that cleaves miRNA precursors into mature miRNAs, reduces the level of the majority of miRNAs in platelets. This leads to altered platelet messenger RNA (mRNA) expression profiles and mild thrombocytopenia. Fibrinogen receptor subunits Itga2b (αIIb) and Itgb3 (ß3) mRNAs were among the differentially expressed transcripts that are increased in platelets lacking Dicer1. Argonaute 2 (Ago2), a member of the miRNA silencing complex, co-immunoprecipitated with αIIband ß3mRNAs in wild-type platelets. Furthermore, co-immunoprecipitation experiments suggested reduced αIIb/ß3/Ago2 complexes in miRNA-deficient platelets. These results suggested that miRNAs regulate both integrin subunits. Subsequent 3' untranslated region luciferase reporter assays confirmed that the translation of both αIIband ß3mRNAs can be regulated by miRNAs miR-326, miR-128, miR-331, and miR-500. Consistent with these molecular changes, the deletion ofDicer1resulted in increased surface expression of integrins αIIband ß3, and enhanced platelet binding to fibrinogen in vivo and in vitro. Heightened platelet reactivity, shortened tail-bleeding time, and reduced survival following collagen/epinephrine-induced pulmonary embolism were also observed in Dicer1-deficient animals. CombinedPf4-cre-mediated deletion of Drosha and Dicer1 did not significantly exacerbate phenotypes observed in single Dicer1 knockout mice. In summary, these findings indicate that Dicer1-dependent generation of mature miRNAs in late-stage MKs and platelets modulates the expression of target mRNAs important for the hemostatic and thrombotic function of platelets.


Asunto(s)
Plaquetas/metabolismo , ARN Helicasas DEAD-box/metabolismo , MicroARNs/metabolismo , Procesamiento Postranscripcional del ARN/fisiología , ARN Mensajero/metabolismo , Ribonucleasa III/metabolismo , Animales , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , ARN Helicasas DEAD-box/genética , Humanos , Integrina alfa2/biosíntesis , Integrina alfa2/genética , Integrina beta3/biosíntesis , Integrina beta3/genética , Ratones , Ratones Noqueados , MicroARNs/genética , Embolia Pulmonar/inducido químicamente , Embolia Pulmonar/genética , Embolia Pulmonar/metabolismo , ARN Mensajero/genética , Ribonucleasa III/genética
9.
Biochem Biophys Res Commun ; 467(4): 785-91, 2015 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-26498519

RESUMEN

R-Ras small GTPase enhances cell spreading and motility via RalBP1/RLIP76, an R-Ras effector that links GTP-R-Ras to activation of Arf6 and Rac1 GTPases. Here, we report that RLIP76 performs these functions by binding cytohesin-2/ARNO, an Arf GTPase guanine exchange factor, and connecting it to R-Ras at recycling endosomes. RLIP76 formed a complex with R-Ras and ARNO by binding ARNO via its N-terminus (residues 1-180) and R-Ras via residues 180-192. This complex was present in Rab11-positive recycling endosomes and the presence of ARNO in recycling endosomes required RLIP76, and was not supported by RLIP76(Δ1-180) or RLIP76(Δ180-192). Spreading and migration required RLIP76(1-180), and RLIP76(Δ1-180) blocked ARNO recruitment to recycling endosomes, and spreading. Arf6 activation with an ArfGAP inhibitor overcame the spreading defects in RLIP76-depleted cells or cells expressing RLIP76(Δ1-180). Similarly, RLIP76(Δ1-180) or RLIP76(Δ180-192) suppressed Arf6 activation. Together these results demonstrate that RLIP76 acts as a scaffold at recycling endosomes by binding activated R-Ras, recruiting ARNO to activate Arf6, thereby contributing to cell spreading and migration.


Asunto(s)
Factores de Ribosilacion-ADP/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Proteínas ras/metabolismo , Factor 6 de Ribosilación del ADP , Animales , Secuencia de Bases , Movimiento Celular/fisiología , Endosomas/metabolismo , Femenino , Fibroblastos/metabolismo , Proteínas Activadoras de GTPasa/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Datos de Secuencia Molecular , Complejos Multiproteicos/metabolismo , Transducción de Señal , Proteínas ras/genética
10.
Biochem Biophys Res Commun ; 454(4): 560-5, 2014 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-25450693

RESUMEN

RLIP76 is a multifunctional protein involved in tumor growth and angiogenesis, and a promising therapeutic target in many cancers. RLIP76 harbors docking sites for many proteins, and we have found that it interacts with ARNO, a guanine nucleotide exchange factor for Arf6, and that RLIP76 regulates activation of Rac1 via Arf6, and regulates cell spreading and migration in an ARNO and Arf6-dependent manner. Here we show that ARNO interacts with the RLIP76 N-terminal domain, and this domain was required for RLIP76-dependent cell spreading and migration. We identified two sites in the RLIP76 N-terminus with differential effects on ARNO binding and downstream signaling: Ser29/Ser30 and Ser62. Ser29/30 mutation to Alanine inhibited ARNO interaction and was sufficient to block RLIP76-dependent cell spreading and migration, as well as RLIP76-dependent Arf6 activation. In contrast, RLIP76(S62A) interacted with ARNO and supported Arf6 activation. However, both sets of mutations blocked Rac1 activation. RLIP76-mediated Rac and Arf6 activation required PI3K activity. S29/30A mutations inhibited RLIP76-dependent PI3K activation, but S62A mutation did not. Together these results show that ARNO interaction with the RLIP76 N-terminus regulates cell spreading and motility via PI3K and Arf6, independent of RLIP76 control of Rac.


Asunto(s)
Factores de Ribosilacion-ADP/metabolismo , Movimiento Celular , Proteínas Activadoras de GTPasa/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal , Proteínas de Unión al GTP rac/metabolismo , Factor 6 de Ribosilación del ADP , Animales , Sitios de Unión , Células Cultivadas , Ratones , Células 3T3 NIH
11.
Cancer Res ; 72(20): 5165-73, 2012 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-22902412

RESUMEN

RalBP1/RLIP76 is a widely expressed multifunctional protein that binds the Ral and R-Ras small GTPases. In the mouse, RLIP76 is nonessential but its depletion or blockade promotes tumorigenesis and heightens the sensitivity of normal and tumor cells to radiation and cytotoxic drugs. However, its pathobiologic functions, which support tumorigenesis, are not well understood. Here, we show that RLIP76 is required for angiogenesis and for efficient neovascularization of primary solid tumors. Tumor growth from implanted melanoma or carcinoma cells was blunted in RLIP76(-/-) mice. An X-ray microcomputed tomography-based method to model tumor vascular structures revealed defects in both the extent and form of tumor angiogenesis in RLIP76(-/-) mice. Specifically, tumor vascular volumes were diminished and vessels were fewer in number, shorter, and narrower in RLIP76(-/-) mice than in wild-type mice. Moreover, we found that angiogenesis was blunted in mutant mice in the absence of tumor cells, with endothelial cells isolated from these animals exhibiting defects in migration, proliferation, and cord formation in vitro. Taken together, our results establish that RLIP76 is required for efficient endothelial cell function and angiogenesis in solid tumors.


Asunto(s)
Proteínas Activadoras de GTPasa/fisiología , Neoplasias/patología , Neovascularización Patológica , Animales , Línea Celular Tumoral , Proteínas Activadoras de GTPasa/genética , Inmunohistoquímica , Ratones , Ratones Noqueados , Neoplasias/irrigación sanguínea , Neoplasias/metabolismo , Tomografía Computarizada por Rayos X , Trasplante Heterólogo
12.
Small GTPases ; 3(3): 139-53, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22751447

RESUMEN

In this study we investigated the dynamics of R-Ras intracellular trafficking and its contributions to the unique roles of R-Ras in membrane ruffling and cell spreading. Wild type and constitutively active R-Ras localized to membranes of both Rab11- and transferrin-positive and -negative vesicles, which trafficked anterograde to the leading edge in migrating cells. H-Ras also co-localized with R-Ras in many of these vesicles in the vicinity of the Golgi, but R-Ras and H-Ras vesicles segregated proximal to the leading edge, in a manner dictated by the C-terminal membrane-targeting sequences. These segregated vesicle trafficking patterns corresponded to distinct modes of targeting to membrane ruffles at the leading edge. Geranylgeranylation was required for membrane anchorage of R-Ras, whereas palmitoylation was required for exit from the Golgi in post-Golgi vesicle membranes and trafficking to the plasma membrane. R-Ras vesicle membranes did not contain phosphatidylinositol (3,4,5)-trisphosphate (PtdIns(3,4,5)P(3)), whereas R-Ras co-localized with PtdIns(3,4,5)P(3) in membrane ruffles. Finally, palmitoylation-deficient R-Ras blocked membrane ruffling, R-Ras/PI3-kinase interaction, enrichment of PtdIns(3,4,5)P(3) at the plasma membrane, and R-Ras-dependent cell spreading. Thus, lipid modification of R-Ras dictates its vesicle trafficking, targeting to membrane ruffles, and its unique roles in localizing PtdIns(3,4,5)P(3) to ruffles and promoting cell spreading.


Asunto(s)
Movimiento Celular , Lipoilación , Vesículas Transportadoras/metabolismo , Proteínas ras/análisis , Proteínas ras/metabolismo , Secuencia de Aminoácidos , Animales , Membrana Celular/metabolismo , Aparato de Golgi/metabolismo , Ratones , Células 3T3 NIH , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatos de Fosfatidilinositol/análisis , Fosfatos de Fosfatidilinositol/metabolismo , Transporte de Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...