Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; : e2308281, 2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38520718

RESUMEN

Organic mixed ionic-electronic conductors (OMIECs) have emerged as promising materials for biological sensing, owing to their electrochemical activity, stability in an aqueous environment, and biocompatibility. Yet, OMIEC-based sensors rely predominantly on the use of composite matrices to enable stimuli-responsive functionality, which can exhibit issues with intercomponent interfacing. In this study, an approach is presented for non-enzymatic glucose detection by harnessing a newly synthesized functionalized monomer, EDOT-PBA. This monomer integrates electrically conducting and receptor moieties within a single organic component, obviating the need for complex composite preparation. By engineering the conditions for electrodeposition, two distinct polymer film architectures are developed: pristine PEDOT-PBA and molecularly imprinted PEDOT-PBA. Both architectures demonstrated proficient glucose binding and signal transduction capabilities. Notably, the molecularly imprinted polymer (MIP) architecture demonstrated faster stabilization upon glucose uptake while it also enabled a lower limit of detection, lower standard deviation, and a broader linear range in the sensor output signal compared to its non-imprinted counterpart. This material design not only provides a robust and efficient platform for glucose detection but also offers a blueprint for developing selective sensors for a diverse array of target molecules, by tuning the receptor units correspondingly.

2.
ACS Omega ; 9(1): 1454-1462, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38239287

RESUMEN

In this work, simple and sensitive detection of dengue virus serotype-3 (DENV-3) antigen was accomplished by a one-dimensional (1D) HKUST-1-functionalized electrochemical sensor. 1D HKUST-1 was synthesized via a coprecipitation method using triethanolamine (TEOA) as pH modulator and structure-directing agent. The structure, morphology, and sensing performance of the HKUST-1-decorated carbon electrode were characterized by X-ray diffraction (XRD), infrared spectroscopy (FTIR), scanning electron microscopy (SEM), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and differential pulse voltammetry (DPV). We found that 40 wt% TEOA transforms the octahedron HKUST-1 to the nanorods while maintaining its crystal structure and providing chemical stability. The 1D HKUST-1-decorated carbon electrode successfully detects the antigen in the range of 0.001-10 ng/mL with a detection limit of 0.932 pg/mL. The immunosensor also exhibits remarkable performance in analyzing the antigen in human serum and showed recovery as high as ∼98% with excellent selectivity and reproducibility.

3.
ACS Biomater Sci Eng ; 10(1): 391-404, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38095213

RESUMEN

The efficacy of neural electrode stimulation and recording hinges significantly on the choice of a neural electrode interface material. Transition metal carbides (TMCs), particularly titanium carbide (TiC), have demonstrated exceptional chemical stability and high electrical conductivity. Yet, the fabrication of TiC thin films and their potential application as neural electrode interfaces remains relatively unexplored. Herein, we present a systematic examination of TiC thin films synthesized through nonreactive radio frequency (RF) magnetron sputtering. TiC films were optimized toward high areal capacitance, low impedance, and stable electrochemical cyclability. We varied the RF power and deposition pressure to pinpoint the optimal properties, focusing on the deposition rate, surface roughness, crystallinity, and elemental composition to achieve high areal capacitance and low impedance. The best-performing TiC film showed an areal capacitance of 475 µF/cm2 with a capacitance retention of 93% after 5000 cycles. In addition, the electrochemical performance of the optimum film under varying scanning rates demonstrated a stable electrochemical performance even under dynamic and fast-changing stimulation conditions. Furthermore, the in vitro cell culture for 3 weeks revealed excellent biocompatibility, promoting cell growth compared with a control substrate. This work presents a novel contribution, highlighting the potential of sputtered TiC thin films as robust neural electrode interface materials.


Asunto(s)
Técnicas de Cultivo de Célula , Electrodos
4.
ACS Mater Au ; 3(3): 242-254, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38089129

RESUMEN

Organic electrochemical transistors (OECTs) are becoming increasingly ubiquitous in various applications at the interface with biological systems. However, their widespread use is hampered by the scarcity of electron-conducting (n-type) backbones and the poor performance and stability of the existing n-OECTs. Here, we introduce organic salts as a solution additive to improve the transduction capability, shelf life, and operational stability of n-OECTs. We demonstrate that the salt-cast devices present a 10-fold increase in transconductance and achieve at least one year-long stability, while the pristine devices degrade within four months of storage. The salt-added films show improved backbone planarity and greater charge delocalization, leading to higher electronic charge carrier mobility. These films show a distinctly porous morphology where the interconnectivity is affected by the salt type, responsible for OECT speed. The salt-based films display limited changes in morphology and show lower water uptake upon electrochemical doping, a possible reason for the improved device cycling stability. Our work provides a new and easy route to improve n-type OECT performance and stability, which can be adapted for other electrochemical devices with n-type films operating at the aqueous electrolyte interface.

5.
Adv Sci (Weinh) ; : e2306716, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38161228

RESUMEN

Electronic immunosensors are indispensable tools for diagnostics, particularly in scenarios demanding immediate results. Conventionally, these sensors rely on the chemical immobilization of antibodies onto electrodes. However, globular proteins tend to adsorb and unfold on these surfaces. Therefore, self-assembled monolayers (SAMs) of thiolated alkyl molecules are commonly used for indirect gold-antibody coupling. Here, a limitation associated with SAMs is revealed, wherein they curtail the longevity of protein sensors, particularly when integrated into the state-of-the-art transducer of organic bioelectronics-the organic electrochemical transistor. The SpyDirect method is introduced, generating an ultrahigh-density array of oriented nanobody receptors stably linked to the gold electrode without any SAMs. It is accomplished by directly coupling cysteine-terminated and orientation-optimized spyTag peptides, onto which nanobody-spyCatcher fusion proteins are autocatalytically attached, yielding a dense and uniform biorecognition layer. The structure-guided design optimizes the conformation and packing of flexibly tethered nanobodies. This biolayer enhances shelf-life and reduces background noise in various complex media. SpyDirect functionalization is faster and easier than SAM-based methods and does not necessitate organic solvents, rendering the sensors eco-friendly, accessible, and amenable to scalability. SpyDirect represents a broadly applicable biofunctionalization method for enhancing the cost-effectiveness, sustainability, and longevity of electronic biosensors, all without compromising sensitivity.

6.
Artículo en Inglés | MEDLINE | ID: mdl-37997899

RESUMEN

The organic electrochemical transistor (OECT) is a biosignal transducer known for its high amplification but relatively slow operation. Here, we demonstrate that the use of an ionic liquid as the dielectric medium significantly improves the switching speed of a p-type enhancement-mode OECT, regardless of the gate electrode used. The OECT response time with the ionic liquid improves up to ca. 41-fold and 46-fold for the silver/silver chloride (Ag/AgCl) and gold (Au) gates, respectively, compared with devices gated with the phosphate buffered saline (PBS) solution. Notably, the transistor gain remains uncompromised, and its maximum is reached at lower voltages compared to those of PBS-gated devices with Ag/AgCl as the gate electrode. Through ultraviolet-visible spectroscopy and etching X-ray photoelectron spectroscopy characterizations, we reveal that the enhanced bandwidth is associated with the prediffused ionic liquid inside the polymer, leading to a higher doping level compared to PBS. Using the ionic liquid-gated OECTs, we successfully detect electrocardiography (ECG) signals, which exhibit a complete waveform with well-distinguished features and a stable signal baseline. By integrating nonaqueous electrolytes that enhance the device bandwidth, we unlock the potential of enhancement-mode OECTs for physiological signal acquisition and other real-time biosignal monitoring applications.

7.
Artículo en Inglés | MEDLINE | ID: mdl-36749895

RESUMEN

The tight regulation of the glucose concentration in the body is crucial for balanced physiological function. We developed an electrochemical transistor comprising an n-type conjugated polymer film in contact with a catalytic enzyme for sensitive and selective glucose detection in bodily fluids. Despite the promise of these sensors, the property of the polymer that led to such high performance has remained unknown, with charge transport being the only characteristic under focus. Here, we studied the impact of the polymer chemical structure on film surface properties and enzyme adsorption behavior using a combination of physiochemical characterization methods and correlated our findings with the resulting sensor performance. We developed five n-type polymers bearing the same backbone with side chains differing in polarity and charge. We found that the nature of the side chains modulated the film surface properties, dictating the extent of interactions between the enzyme and the polymer film. Quartz crystal microbalance with dissipation monitoring studies showed that hydrophobic surfaces retained more enzymes in a densely packed arrangement, while hydrophilic surfaces captured fewer enzymes in a flattened conformation. X-ray photoelectron spectroscopy analysis of the surfaces revealed strong interactions of the enzyme with the glycolated side chains of the polymers, which improved for linear side chains compared to those for branched ones. We probed the alterations in the enzyme structure upon adsorption using circular dichroism, which suggested protein denaturation on hydrophobic surfaces. Our study concludes that a negatively charged, smooth, and hydrophilic film surface provides the best environment for enzyme adsorption with desired mass and conformation, maximizing the sensor performance. This knowledge will guide synthetic work aiming to establish close interactions between proteins and electronic materials, which is crucial for developing high-performance enzymatic metabolite biosensors and biocatalytic charge-conversion devices.

8.
Chem Asian J ; 17(17): e202200427, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35735047

RESUMEN

Poly(3,4-ethylenedioxythiophene) (PEDOT) is a prime example of conducting polymer materials for supercapacitor electrodes that offer ease of processability and sophisticated chemical stability during operation and storage in aqueous environments. Yet, continuous improvement of its electrochemical capacitance and stability upon long cycles remains a major interest in the field, such as developing PEDOT-based composites. This work evaluates the electrochemical performances of hydroxymethyl PEDOT (PEDOTOH) coupled with hydrogel additives, namely poly(ethylene oxide) (PEO), poly(acrylic acid) (PAA), and polyethyleneimine (PEI), fabricated via a single-step electrochemical polymerization method in an aqueous solution. The PEDOTOH/PEO composite exhibits the highest capacitance (195.2 F g-1 ) compared to pristine PEDOTOH (153.9 F g-1 ), PEDOTOH/PAA (129.9 F g-1 ), and PEDOTOH/PEI (142.3 F g-1 ) at a scan rate of 10 mV s-1 . The PEDOTOH/PEO electrodes were then assembled into a symmetrical supercapacitor in an agarose gel. The type of supporting electrolytes and salt concentrations were further examined to identify the optimal agarose-based gel electrolyte. The supercapacitors comprising 2 M agarose-LiClO4 achieved a specific capacitance of 27.6 F g-1 at a current density of 2 A g-1 , a capacitance retention of ∼94% after 10,000 charge/discharge cycles at 10.6 A g-1 , delivering a maximum energy and power densities of 11.2 Wh kg-1 and 17.28 kW kg-1 , respectively. The performance of the proposed supercapacitor outperformed several reported PEDOT-based supercapacitors, including PEDOT/carbon fiber, PEDOT/CNT, and PEDOT/graphene composites. This study provides insights into the effect of incorporated hydrogel in the PEDOTOH network and the optimal conditions of agarose-based gel electrolytes for high-performance PEDOT-based supercapacitor devices.


Asunto(s)
Electrólitos , Hidrogeles , Capacidad Eléctrica , Polimerizacion , Sefarosa
9.
Adv Mater ; 34(35): e2202972, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35772173

RESUMEN

Conventional biosensors rely on the diffusion-dominated transport of the target analyte to the sensor surface. Consequently, they require an incubation step that may take several hours to allow for the capture of analyte molecules by sensor biorecognition sites. This incubation step is a primary cause of long sample-to-result times. Here, alternating current electrothermal flow (ACET) is integrated in an organic electrochemical transistor (OECT)-based sensor to accelerate the device operation. ACET is applied to the gate electrode functionalized with nanobody-SpyCatcher fusion proteins. Using the SARS-CoV-2 spike protein in human saliva as an example target, it is shown that ACET enables protein recognition within only 2 min of sample exposure, supporting its use in clinical practice. The ACET integrated sensor exhibits better selectivity, higher sensitivity, and lower limit of detection than the equivalent sensor with diffusion-dominated operation. The performance of ACET integrated sensors is compared with two types of organic semiconductors in the channel and grounds for device-to-device variations are investigated. The results provide guidelines for the channel material choice in OECT-based biochemical sensors, and demonstrate that ACET integration substantially decreases the detection speed while increasing the sensitivity and selectivity of transistor-based sensors.


Asunto(s)
Técnicas Biosensibles , COVID-19 , Técnicas Biosensibles/métodos , Convección , Técnicas Electroquímicas/métodos , Humanos , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Transistores Electrónicos
10.
Chem Rev ; 122(4): 4581-4635, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-34610244

RESUMEN

Electrochemical detection of metabolites is essential for early diagnosis and continuous monitoring of a variety of health conditions. This review focuses on organic electronic material-based metabolite sensors and highlights their potential to tackle critical challenges associated with metabolite detection. We provide an overview of the distinct classes of organic electronic materials and biorecognition units used in metabolite sensors, explain the different detection strategies developed to date, and identify the advantages and drawbacks of each technology. We then benchmark state-of-the-art organic electronic metabolite sensors by categorizing them based on their application area (in vitro, body-interfaced, in vivo, and cell-interfaced). Finally, we share our perspective on using organic bioelectronic materials for metabolite sensing and address the current challenges for the devices and progress to come.


Asunto(s)
Técnicas Biosensibles , Electrónica , Compuestos Orgánicos
11.
Small Methods ; 5(12): e2100819, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34928032

RESUMEN

MXene-based hydrogels have received significant attention due to several promising properties that distinguish them from conventional hydrogels. In this study, it is shown that both strain and pH level can be exploited to tune the electronic and ionic transport in MXene-based hydrogel (M-hydrogel), which consists of MXene (Ti3 C2 Tx )-polyacrylic acid/polyvinyl alcohol hydrogel. In particular, the strain applied to the M-hydrogel changes MXene sheet orientation which leads to modulation of ionic transport within the M-hydrogel, due to strain-induced orientation of the surface charge-guided ionic pathway. Simultaneously, the reorientation of MXene sheets under the axial strain increases the electronic resistance of the M-hydrogel due to the loss of the percolative network of conductive MXene sheets during the stretching process. The iontronic characteristics of the M-hydrogel can thus be tuned by strain and pH, which allows using the M-hydrogel as a muscle fatigue sensor during exercise. A fully functional M-hydrogel is developed for real-time measurement of muscle fatigue during exercise and coupled it to a smartphone to provide a portable or wearable digital readout. This concept can be extended to other fields that require accurate analysis of constantly changing physical and chemical conditions, such as physiological changes in the human body.


Asunto(s)
Fatiga Muscular/fisiología , Alcohol Polivinílico/química , Titanio/química , Conductividad Eléctrica , Diseño de Equipo , Ejercicio Físico , Células HeLa , Humanos , Concentración de Iones de Hidrógeno , Dispositivos Electrónicos Vestibles
12.
Nat Biomed Eng ; 5(7): 666-677, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34031558

RESUMEN

The coronavirus disease 2019 (COVID-19) pandemic has highlighted the need for rapid and sensitive protein detection and quantification in simple and robust formats for widespread point-of-care applications. Here, we report on nanobody-functionalized organic electrochemical transistors with a modular architecture for the rapid quantification of single-molecule-to-nanomolar levels of specific antigens in complex bodily fluids. The sensors combine a solution-processable conjugated polymer in the transistor channel and high-density and orientation-controlled bioconjugation of nanobody-SpyCatcher fusion proteins on disposable gate electrodes. The devices provide results after 10 min of exposure to 5 µl of unprocessed samples, maintain high specificity and single-molecule sensitivity in human saliva and serum, and can be reprogrammed to detect any protein antigen if a corresponding specific nanobody is available. We used the sensors to detect green fluorescent protein, and severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and Middle East respiratory syndrome coronavirus (MERS-CoV) spike proteins, and for the COVID-19 screening of unprocessed clinical nasopharyngeal swab and saliva samples with a wide range of viral loads.


Asunto(s)
Técnicas Biosensibles/métodos , Coronavirus del Síndrome Respiratorio de Oriente Medio/patogenicidad , Nanotecnología/métodos , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/patogenicidad , COVID-19/virología , Humanos , Anticuerpos de Dominio Único/inmunología
13.
ACS Nano ; 15(5): 8130-8141, 2021 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-33784064

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disorder associated with a severe loss in thinking, learning, and memory functions of the brain. To date, no specific treatment has been proven to cure AD, with the early diagnosis being vital for mitigating symptoms. A common pathological change found in AD-affected brains is the accumulation of a protein named amyloid-ß (Aß) into plaques. In this work, we developed a micron-scale organic electrochemical transistor (OECT) integrated with a microfluidic platform for the label-free detection of Aß aggregates in human serum. The OECT channel-electrolyte interface was covered with a nanoporous membrane functionalized with Congo red (CR) molecules showing a strong affinity for Aß aggregates. Each aggregate binding to the CR-membrane modulated the vertical ion flow toward the channel, changing the transistor characteristics. Thus, the device performance was not limited by the solution ionic strength nor did it rely on Faradaic reactions or conformational changes of bioreceptors. The high transconductance of the OECT, the precise porosity of the membrane, and the compactness endowed by the microfluidic enabled the Aß aggregate detection over eight orders of magnitude wide concentration range (femtomolar-nanomolar) in 1 µL of human serum samples. We expanded the operation modes of our transistors using different channel materials and found that the accumulation-mode OECTs displayed the lowest power consumption and highest sensitivities. Ultimately, these robust, low-power, sensitive, and miniaturized microfluidic sensors helped to develop point-of-care tools for the early diagnosis of AD.


Asunto(s)
Enfermedad de Alzheimer , Nanoporos , Enfermedad de Alzheimer/diagnóstico , Péptidos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Humanos , Microfluídica
14.
Macromol Biosci ; 20(11): e2000215, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32820588

RESUMEN

The development of electronics adept at interfacing with the nervous system is an ever-growing effort, leading to discoveries in fundamental neuroscience applied in clinical setting. Highly capacitive and electrochemically stable electronic materials are paramount for these advances. A systematic study is presented where copolymers based on 3,4-ethylenedioxythiophene (EDOT) and its hydroxyl-terminated counterpart (EDOTOH) are electropolymerized in an aqueous solution in the presence of various counter anions and additives. Amongst the conducting materials developed, the copolymer p(EDOT-ran-EDOTOH) doped with perchlorate in the presence of ethylene glycol shows high specific capacitance (105 F g-1 ), and capacitance retention (85%) over 1000 galvanostatic charge-discharge cycles. A microelectrode array-based on this material is fabricated and primary cortical neurons are cultured therein for several days. The microelectrodes electrically stimulate targeted neuronal networks and record their activity with high signal-to-noise ratio. The stability of charge injection capacity of the material is validated via long-term pulsing experiments. While providing insights on the effect of additives and dopants on the electrochemical performance and operational stability of electropolymerized conducting polymers, this study highlights the importance of high capacitance accompanied with stability to achieve high performance electrodes for biological interfacing.


Asunto(s)
Benchmarking , Compuestos Bicíclicos Heterocíclicos con Puentes/química , Neuronas/fisiología , Polimerizacion , Polímeros/química , Electroquímica , Electrodos
15.
Nat Commun ; 11(1): 3004, 2020 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-32532975

RESUMEN

From established to emergent technologies, doping plays a crucial role in all semiconducting devices. Doping could, theoretically, be an excellent technique for improving repressively low transconductances in n-type organic electrochemical transistors - critical for advancing logic circuits for bioelectronic and neuromorphic technologies. However, the technical challenge is extreme: n-doped polymers are unstable in electrochemical transistor operating environments, air and water (electrolyte). Here, the first demonstration of doping in electron transporting organic electrochemical transistors is reported. The ammonium salt tetra-n-butylammonium fluoride is simply admixed with the conjugated polymer poly(N,N'-bis(7-glycol)-naphthalene-1,4,5,8-bis(dicarboximide)-co-2,2'-bithiophene-co-N,N'-bis(2-octyldodecyl)-naphthalene-1,4,5,8-bis(dicarboximide), and found to act as a simultaneous molecular dopant and morphology-additive. The combined effects enhance the n-type transconductance with improved channel capacitance and mobility. Furthermore, operational and shelf-life stability measurements showcase the first example of water-stable n-doping in a polymer. Overall, the results set a precedent for doping/additives to impact organic electrochemical transistors as powerfully as they have in other semiconducting devices.

16.
Nat Mater ; 19(4): 456-463, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31844278

RESUMEN

A promising class of materials for applications that rely on electron transfer for signal generation are the n-type semiconducting polymers. Here we demonstrate the integration of an n-type conjugated polymer with a redox enzyme for the autonomous detection of glucose and power generation from bodily fluids. The reversible, mediator-free, miniaturized glucose sensor is an enzyme-coupled organic electrochemical transistor with a detection range of six orders of magnitude. This n-type polymer is also used as an anode and paired with a polymeric cathode in an enzymatic fuel cell to convert the chemical energy of glucose and oxygen into electrical power. The all-polymer biofuel cell shows a performance that scales with the glucose content in the solution and a stability that exceeds 30 days. Moreover, at physiologically relevant glucose concentrations and from fluids such as human saliva, it generates enough power to operate an organic electrochemical transistor, thus contributes to the technological advancement of self-powered micrometre-scale sensors and actuators that run on metabolites produced in the body.


Asunto(s)
Fuentes de Energía Bioeléctrica , Técnicas Biosensibles , Técnicas Electroquímicas , Glucosa/metabolismo , Saliva/metabolismo , Humanos
17.
Biosens Bioelectron ; 143: 111561, 2019 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-31446202

RESUMEN

Alzheimer's disease (AD) is a progressive neurodegenerative disease associated with severe memory loss and impaired cognitive skills. A common pathological change found in AD-affected brains is the accumulation of a peptide named amyloid-ß (Aß) that can form plaques. Aß aggregates are visible to structural scanning tools; however, these bulky and expensive instruments are accessible to trained personnel in clinical settings only, thus hampering timely diagnosis of the disease, particularly in low-resource settings. In this work, we design an organic electrochemical transistor (OECT) for in vitro detection of Aß aggregates in human serum. The OECT channel is integrated with a nanostructured isoporous membrane which has a strong affinity for Aß aggregates. The detection mechanism relies on the membrane capturing Aß aggregates larger than the size of its pores and thus blocking the penetration of electrolyte ions into the channel underneath. Combining the high transconductance of the OECT with the precise porosity and selectivity of the membrane, the device detects the presence of Aß aggregates in human serum samples with excellent sensitivity. This is the first-time demonstration of a biofunctionalized, nanostructured, and isoporous membrane integrated with a high-performance transistor for biosensing. This robust, low-power, non-invasive, and miniaturized sensor aids in the development of point-of-care tools for early diagnosis of AD.


Asunto(s)
Enfermedad de Alzheimer/diagnóstico , Péptidos beta-Amiloides/sangre , Péptidos beta-Amiloides/aislamiento & purificación , Técnicas Biosensibles , Enfermedad de Alzheimer/sangre , Encéfalo/metabolismo , Encéfalo/patología , Humanos , Membranas Artificiales , Nanoestructuras/química , Placa Amiloide/metabolismo , Placa Amiloide/patología , Transistores Electrónicos
18.
Lab Chip ; 18(4): 574-584, 2018 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-29299579

RESUMEN

To perform precision medicine in real-time, a sensor capable of continuously monitoring target biomolecules secreted from a patient under dynamic situations is essential. In this study, a novel portable device combining an aptamer probe and a nanofluidic component was developed, enabling the buffer-free continuous monitoring of small molecules in biological fluids. This integration is synergistic: the aptamer sensor is used to bind target biomolecules, triggering a fluorescence signal change, while the nanofluidic component is applied to achieve ion concentration polarization and convert serum into a clean buffer for aptamer signal regeneration. To demonstrate the system's versatility, we measured various adenosine triphosphate concentrations in human serum for hours with high sensitivity and specificity at minute temporal resolution. Our results demonstrate that this integrative device can be applied for the continuous measurement of target biomolecules and online signal regeneration in patient samples without the use of bulky clean buffer solutions for dynamic real-time healthcare.


Asunto(s)
Adenosina Trifosfato/sangre , Aptámeros de Nucleótidos/sangre , Técnicas Biosensibles , Líquidos Corporales/química , Técnicas Analíticas Microfluídicas , Nanotecnología , Fluorescencia , Humanos , Iones/sangre , Factores de Tiempo
19.
ACS Appl Bio Mater ; 1(5): 1348-1354, 2018 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-34996238

RESUMEN

Conjugated polymers are promising engineering tools for establishing bilateral electrical communication with living systems. The free energy of their films, the roughness, and charge density play major roles in determining their interactions with lipid bilayers, which form the membrane barrier around every living cell allowing for molecular exchange with the extracellular environment. In this work, we investigate lipid bilayer formation from synthetic lipid vesicles (liposomes) on a series of amphiphilic copolymer films based on naphthalene 1,4,5,8 tetracarboxylic diimide bithiophene (NDI-T2) backbone where the alkyl side chain is gradually exchanged for an ethylene glycol-based side chain. As the concentration of ethylene glycol in the composition changes, the surface energy of the films varies drastically, which, in turn, effects the interactions with liposomes. By imaging the interactions of fluorophore-labeled liposomes with these surfaces via a fluorescence microscope, we show that the films can be cast such that ethylene glycol-rich regions, which liposomes favor, are accumulated on the surface and extract information on the wettability behavior that has not been possible using other surface sensitive techniques. This approach uncovers the solid/liquid interface of a promising class of electron transporting conjugated polymer films and suggests synthetic strategies to maximize the number of lipid-polymer contacts for the formation of supported lipid bilayers.

20.
Analyst ; 140(19): 6485-8, 2015 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-26288852

RESUMEN

We have developed a field effect transistor (FET) sensor to sensitively detect copper ions (Cu(2+)) in a human serum (HS) sample for promising health-care diagnosis. By utilizing a Cu(2+)-binding prion protein that was immobilized on the FET gate surface, such an FET sensor can provide a simple, label free and highly selective performance, even in HS samples. We demonstrated the sensitivity of the sensor at the nanomolar level, 0-100 nM, which is very useful for the detection range of Cu(2+) deficiency in practical applications.


Asunto(s)
Técnicas Biosensibles/instrumentación , Cobre/sangre , Proteínas Inmovilizadas/química , Priones/química , Transistores Electrónicos , Humanos , Límite de Detección , Masculino , Modelos Moleculares , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA