Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
EJNMMI Radiopharm Chem ; 8(1): 20, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37646865

RESUMEN

BACKGROUND: Imaging of cell death can provide an early indication of treatment response in cancer. [99mTc]Tc-Duramycin is a small-peptide SPECT tracer that recognizes both apoptotic and necrotic cells by binding to phosphatidylethanolamine present in the cell membrane. Preclinically, this tracer has shown to have favorable pharmacokinetics and selective tumor accumulation early after the onset of anticancer therapy. In this first-in-human study, we report the safety, biodistribution and internal radiation dosimetry of [99mTc]Tc-Duramycin in healthy human volunteers. RESULTS: Six healthy volunteers (3 males, 3 females) were injected intravenously with [99mTc]Tc-Duramycin (dose: 6 MBq/kg; 473 ± 36 MBq). [99mTc]Tc-Duramycin was well tolerated in all subjects, with no serious adverse events reported. Following injection, a 30-min dynamic planar imaging of the abdomen was performed, and whole-body (WB) planar scans were acquired at 1, 2, 3, 6 and 23 h post-injection (PI), with SPECT acquisitions after each WB scan and one low-dose CT after the first SPECT. In vivo 99mTc activities were determined from semi-quantitative analysis of the images, and time-activity curves were generated. Residence times were calculated from the dynamic and WB planar scans. The mean effective dose was 7.61 ± 0.75 µSv/MBq, with the kidneys receiving the highest absorbed dose (planar analysis: 43.82 ± 4.07 µGy/MBq, SPECT analysis: 19.72 ± 3.42 µGy/MBq), followed by liver and spleen. The median effective dose was 3.61 mSv (range, 2.85-4.14). The tracer cleared slowly from the blood (effective half-life of 2.0 ± 0.4 h) due to high plasma protein binding with < 5% free tracer 3 h PI. Excretion was almost exclusively renal. CONCLUSION: [99mTc]Tc-Duramycin demonstrated acceptable dosimetry (< 5 mSv) and a favorable safety profile. Due to slow blood clearance, optimal target-to-background ratios are expected 5 h PI. These data support the further assessment of [99mTc]Tc-Duramycin for clinical treatment response evaluation. TRIAL REGISTRATION: NCT05177640, Registered April 30, 2021, https://clinicaltrials.gov/study/NCT05177640 .

2.
J Nucl Med ; 63(6): 942-947, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34531262

RESUMEN

Synaptic dysfunction is a primary mechanism underlying Huntington disease (HD) progression. This study investigated changes in synaptic vesicle glycoprotein 2A (SV2A) density by means of 11C-UCB-J small-animal PET imaging in the central nervous system of mice with HD. Methods: Dynamic 11C-UCB-J small-animal PET imaging was performed at clinically relevant disease stages (at 3, 7, 10, and 16 mo) in the heterozygous knock-in Q175DN mouse model of HD and wild-type littermates (16-18 mice per genotype and time point). Cerebral 11C-UCB-J analyses were performed to assess genotypic differences during presymptomatic (3 mo) and symptomatic (7-16 mo) disease stages. 11C-UCB-J binding in the spinal cord was quantified at 16 mo. 3H-UCB-J autoradiography and SV2A immunofluorescence were performed postmortem in mouse and human brain tissues. Results:11C-UCB-J binding was lower in symptomatic heterozygous mice than in wild-type littermates in parallel with disease progression (7 and 10 mo: P < 0.01; 16 mo: P < 0.0001). Specific 11C-UCB-J binding was detectable in the spinal cord, with symptomatic heterozygous mice displaying a significant reduction (P < 0.0001). 3H-UCB-J autoradiography and SV2A immunofluorescence corroborated the in vivo measurements demonstrating lower SV2A in heterozygous mice (P < 0.05). Finally, preliminary analysis of SV2A in the human brain postmortem suggested lower SV2A in HD gene carriers than in controls without dementia. Conclusion:11C-UCB-J PET detected SV2A deficits during symptomatic disease in heterozygous mice in both the brain and the spinal cord and therefore may be suitable as a novel marker of synaptic integrity widely distributed in the central nervous system. On clinical application, 11C-UCB-J PET imaging may have promise for SV2A measurement in patients with HD during disease progression and after disease-modifying therapeutic strategies.


Asunto(s)
Enfermedad de Huntington , Animales , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Progresión de la Enfermedad , Humanos , Enfermedad de Huntington/diagnóstico por imagen , Enfermedad de Huntington/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Ratones , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Tomografía de Emisión de Positrones/métodos , Piridinas/metabolismo , Vesículas Sinápticas/metabolismo
3.
Eur J Nucl Med Mol Imaging ; 49(4): 1166-1175, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34651228

RESUMEN

PURPOSE: As several therapies aimed at lowering mutant huntingtin (mHTT) brain levels in Huntington's disease (HD) are currently being investigated, noninvasive positron emission tomography (PET) imaging of mHTT could be utilized to directly evaluate therapeutic efficacy and monitor disease progression. Here we characterized and longitudinally assessed the novel radioligand [11C]CHDI-626 for mHTT PET imaging in the zQ175DN mouse model of HD. METHODS: After evaluating radiometabolites and radioligand kinetics, we conducted longitudinal dynamic PET imaging at 3, 6, 9, and 13 months of age (M) in wild-type (WT, n = 17) and heterozygous (HET, n = 23) zQ175DN mice. Statistical analysis was performed to evaluate temporal and genotypic differences. Cross-sectional cohorts at each longitudinal time point were included for post-mortem [3H]CHDI-626 autoradiography. RESULTS: Despite fast metabolism and kinetics, the radioligand was suitable for PET imaging of mHTT. Longitudinal quantification could discriminate between genotypes already at premanifest stage (3 M), showing an age-associated increase in signal in HET mice in parallel with mHTT aggregate load progression, as supported by the post-mortem [3H]CHDI-626 autoradiography. CONCLUSION: With clinical evaluation underway, [11C]CHDI-626 PET imaging appears to be a suitable preclinical candidate marker to monitor natural HD progression and for the evaluation of mHTT-lowering therapies.


Asunto(s)
Enfermedad de Huntington , Animales , Radioisótopos de Carbono , Estudios Transversales , Modelos Animales de Enfermedad , Humanos , Enfermedad de Huntington/metabolismo , Ratones , Tomografía de Emisión de Positrones/métodos
4.
Neuroimage Clin ; 31: 102701, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34090124

RESUMEN

Neuroinflammation is a key component of epileptogenesis, the process leading to acquired epilepsy. In recent years, with the development of non-invasive in vivo positron emission tomography (PET) imaging of translocator protein 18 kDa (TSPO), a marker of neuroinflammation, it has become possible to perform longitudinal studies to characterize neuroinflammation at different disease stages in animal models of epileptogenesis. This study aimed to utilize the prognostic capability of TSPO PET imaging at disease onset (2 weeks post-SE) to categorize epileptic rats with distinct seizure burden based on TSPO levels at disease onset and investigate their association to TSPO expression at the chronic epilepsy stage. Controls (n = 14) and kainic acid-induced status epilepticus (KASE) rats (n = 41) were scanned non-invasively with [18F]PBR111 PET imaging measuring TSPO expression. Animals were monitored using video-electroencephalography (vEEG) up to chronic disease (12 weeks post-SE), at which TSPO levels ([3H]PK11195) as well as other post-mortem abnormalities (namely synaptic density ([3H]UCB-J), neuronal loss (NeuN), and neurodegeneration (FjC)) were investigated. By applying multivariate analysis, TSPO PET imaging at disease onset identified three KASE groups with significantly different spontaneous recurrent seizures (SRS) burden (defined as rare SRS, sporadic SRS, and frequent SRS) (p = 0.003). Interestingly, TSPO levels were significantly different when comparing the three KASE groups (p < 0.0001), with the frequent SRS group characterized only by a limited focal TSPO increase at disease onset. On the contrary, TSPO measured during chronic epilepsy was found to be the highest in the frequent SRS group and correlated with seizure burden (r = 0.826, p < 0.0001). Importantly, early and chronic TSPO levels did not correlate (r = -0.05). Finally, significant pathological changes in neuronal loss, synaptic density, and neurodegeneration were found not only when compared to control animals (p < 0.01), but also between the three KASE rat categories in the hippocampus (p < 0.05). Early and chronic TSPO upregulation following epileptogenic insult appear to be driven by two superimposed dynamic processes. The former is associated with epileptogenesis as measured at disease onset, while the latter is related to seizure frequency as quantified during chronic epilepsy.


Asunto(s)
Epilepsia del Lóbulo Temporal , Receptores de GABA-A/metabolismo , Animales , Encéfalo/metabolismo , Proteínas Portadoras/metabolismo , Modelos Animales de Enfermedad , Epilepsia del Lóbulo Temporal/diagnóstico por imagen , Epilepsia del Lóbulo Temporal/metabolismo , Imagen Molecular , Fenotipo , Tomografía de Emisión de Positrones , Ratas , Regulación hacia Arriba
5.
Mol Imaging Biol ; 23(2): 208-219, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33179158

RESUMEN

PURPOSE: Our aim in this study was to compare different non-invasive pharmacokinetic models and assess test-retest reproducibility of the radioligand [11C]SCH23390 for the quantification of dopamine D1-like receptor (D1R) in both wild-type (WT) mice and heterozygous (HET) Q175DN mice as Huntington's disease (HD) model. PROCEDURES: Adult WT (n = 9) and HET (n = 14) mice underwent a 90-min [11C]SCH23390 positron emission tomography (PET) scan followed by computed tomography (CT) to evaluate the pharmacokinetic modelling in healthy and diseased conditions. Additionally, 5 WT mice and 7 HET animals received a second [11C]SCH23390 PET scan for test-retest reproducibility. Parallel assessment of the simplified reference tissue model (SRTM), the multilinear reference tissue model (MRTM) and the Logan reference tissue model (Logan Ref) using the striatum as a receptor-rich region and the cerebellum as a receptor-free (reference) region was performed to define the most suitable method for regional- and voxel-based quantification of the binding potential (BPND). Finally, standardised uptake value ratio (SUVR-1) was assessed as a potential simplified measurement. RESULTS: For all models, we measured a significant decline in dopamine D1R density (e.g. SRTM = - 38.5 ± 5.0 %, p < 0.0001) in HET mice compared to WT littermates. Shortening the 90-min scan duration resulted in large underestimation of striatal BPND in both WT mice (SRTM 60 min: - 17.7 ± 2.8 %, p = 0.0078) and diseased HET (SRTM 60 min: - 13.1 ± 4.1 %, p = 0.0001). Striatal BPND measurements were very reproducible with an average test-retest variability below 5 % when using both MRTM and SRTM. Parametric BPND maps generated with SRTM were highly reliable, showing nearly perfect agreement to the regional analysis (r2 = 0.99, p < 0.0001). Finally, SRTM provided the most accurate estimate for relative tracer delivery R1 with both regional- and voxel-based analyses. SUVR-1 at different time intervals were not sufficiently reliable when compared to BPND (r2 < 0.66). CONCLUSIONS: Ninety-minute acquisition and the use of SRTM for pharmacokinetic modelling is recommended. [11C]SCH23390 PET imaging demonstrates optimal characteristics for the study of dopamine D1R density in models of psychiatric and neurological disorders as exemplified in the Q175DN mouse model of HD.


Asunto(s)
Benzazepinas/farmacocinética , Encéfalo/diagnóstico por imagen , Enfermedad de Huntington/diagnóstico por imagen , Imagen Molecular/métodos , Tomografía de Emisión de Positrones/métodos , Receptores de Dopamina D1/antagonistas & inhibidores , Animales , Encéfalo/metabolismo , Radioisótopos de Carbono , Modelos Animales de Enfermedad , Técnicas de Sustitución del Gen , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/patología , Masculino , Ratones , Ratones Transgénicos , Receptores de Dopamina D1/metabolismo , Reproducibilidad de los Resultados , Distribución Tisular
6.
Neuropharmacology ; 177: 108160, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-32454126

RESUMEN

We aimed to evaluate [3-(6-methyl-pyridin-2-ylethynyl)-cyclohex-2-enone-0-11C-methyloxime] ([11C]ABP688) small animal positron emission tomography (µPET) as a biomarker to visualize possible longitudinal changes in metabotropic glutamate receptor 5 (mGluR5) availability in the brain of SAP90/PSD-95 associated protein 3 (Sapap3) knockout (ko) mice, showing obsessive compulsive disorder (OCD)-like behavior. METHODS: Alongside the assessment of grooming, we performed [11C]ABP688 µPET/CT imaging in wildtype (wt; n=10) and ko (n=11) mice both at 3 and 9 months. Using the simplified reference tissue method (SRTM), the nondisplaceable binding potential (BPND) was calculated representing the in vivo availability of the metabotropic glutamate receptor 5 (mGluR5) in the brain with the cerebellum as a reference region. Longitudinal voxel-based statistical parametric mapping (SPM) was performed on BPND images. Results were verified using [11C]ABP688 ex vivo autoradiography, [3H]ABP688 in vitro autoradiography, and mGluR5 immunohistochemistry. RESULTS: Cross-sectional comparisons revealed significantly increased grooming parameters in ko animals, at both time points. A significant longitudinal increase in % grooming duration (+268.25%; p<0.05) reflected aggravation of this behavior in ko mice. [11C]ABP688 µPET revealed significantly lower mGluR5 availability in the cortex, striatum, hippocampus, and amygdala of ko mice at both ages. A significant longitudinal BPND decline was present for ko mice (p<0.01: cortex -17.14%, striatum -19.82%, amygdala -23.57%; p<0.05: hippocampus -15.53%), which was confirmed by SPM (p<0.01). CONCLUSION: Sapap3 ko mice show a decline in mGluR5 availability in OCD relevant brain regions parallel to the worsening of OCD-like behavior. This demonstrates a potential role for [11C]ABP688 PET as a biomarker to monitor disease progression in vivo.


Asunto(s)
Radioisótopos de Carbono/metabolismo , Aseo Animal/fisiología , Proteínas del Tejido Nervioso/deficiencia , Trastorno Obsesivo Compulsivo/metabolismo , Oximas/metabolismo , Tomografía de Emisión de Positrones/tendencias , Piridinas/metabolismo , Animales , Progresión de la Enfermedad , Femenino , Estudios Longitudinales , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Trastorno Obsesivo Compulsivo/diagnóstico por imagen , Trastorno Obsesivo Compulsivo/genética
7.
ACS Med Chem Lett ; 11(5): 933-939, 2020 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-32435408

RESUMEN

PFKFB3, a glycolysis-related enzyme upregulated in inflammatory conditions and angiogenesis, is an emerging target for diagnosis and therapy of atherosclerosis. The fluorinated phenoxindazole [18F]ZCDD083 was synthesized, radiolabeled in 17 ± 5% radiochemical yield and >99% radiochemical purity, and formulated for preclinical PET/CT imaging in mice. In vivo stability analysis showed no significant metabolite formation. Biodistribution studies showed high blood pool activity and slow hepatobiliary clearance. Significant activity was detected in the lung 2 h postinjection (pi) (11.0 ± 1.5%ID/g), while at 6 h pi no pulmonary background was observed. Ex vivo autoradiography at 6 h pi showed significant high uptake of [18F]ZCDD083 in the arch region and brachiocephalic artery of atherosclerotic mice, and no uptake in control mice, matching plaques distribution seen by lipid staining along with PFKFB3 expression seen by immunofluorescent staining. In vivo PET scans showed higher aortic region uptake of [18F]ZCDD083 in atherosclerotic ApoE-/-Fbn1C1039G+/- than in control mice (0.78 ± 0.05 vs 0.44 ± 0.09%ID/g). [18F]ZCDD083 was detected in aortic arch and brachiocephalic artery of ApoE-/- (with moderate atherosclerosis) and ApoE-/-Fbn1C1039G+/- (with severe, advanced atherosclerosis) mice, suggesting this tracer may be useful for the noninvasive detection of atherosclerotic plaques in vivo.

8.
ACS Omega ; 5(9): 4449-4456, 2020 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-32175492

RESUMEN

Pretargeted positron emission tomography (PET) imaging based on the bioorthogonal inverse-electron-demand Diels-Alder reaction between tetrazines (Tz) and trans-cyclooctenes (TCO) has emerged as a promising tool for solid tumor imaging, allowing the use of short-lived radionuclides in immune-PET applications. With this strategy, it became possible to achieve desirable target-to-background ratios and at the same time to decrease the radiation burden to nontargeted tissues because of the fast clearance of small PET probes. Here, we show the synthesis of novel 18F-labeled dTCO-amide probes for pretargeted immuno-PET imaging. The PET probes were evaluated regarding their stability, reactivity toward tetrazine, and pharmacokinetic profile. [ 18 F]MICA-213 showed an extremely fast kinetic rate (10,553 M-1 s-1 in 50:50 MeOH/water), good stability in saline and plasma up to 4 h at 37 °C with no isomerization observed, and the biodistribution in healthy mice revealed a mixed hepatobiliary and renal clearance with no defluorination and low background in other tissues. [ 18 F]MICA-213 was further used for in vivo pretargeted immune-PET imaging carried out in nude mice bearing LS174T colorectal tumors that were previously treated with a tetrazine-modified anti-TAG-72 monoclonal antibody (CC49). Pretargeted µPET imaging results showed clear visualization of the tumor tissue with a significantly higher uptake when compared to the control.

9.
Mol Neurobiol ; 57(4): 2038-2047, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31912442

RESUMEN

Impairment of group I metabotropic glutamate receptors (mGluRs) results in altered glutamate signalling, which is associated with several neurological disorders including Huntington's Disease (HD), an autosomal neurodegenerative disease. In this study, we assessed in vivo pathological changes in mGluR1 availability in the Q175DN mouse model of HD using longitudinal positron emission tomography (PET) imaging with the radioligand [11C]ITDM. Ninety-minute dynamic PET imaging scans were performed in 22 heterozygous (HET) Q175DN mice and 22 wild-type (WT) littermates longitudinally at 6, 12, and 16 months of age. Analyses of regional volume of distribution with an image-derived input function (VT (IDIF)) and voxel-wise parametric VT (IDIF) maps were performed to assess differences between genotypes. Post-mortem evaluation at 16 months was done to support in vivo findings. [11C]ITDM VT (IDIF) quantification revealed higher mGluR1 availability in the brain of HET mice compared to WT littermates (e.g. cerebellum: + 15.0%, + 17.9%, and + 17.6% at 6, 12, and 16 months, respectively; p < 0.001). In addition, an age-related decline in [11C]ITDM binding independent of genotype was observed between 6 and 12 months. Voxel-wise analysis of parametric maps and post-mortem quantifications confirmed the elevated mGluR1 availability in HET mice compared to WT littermates. In conclusion, in vivo measurement of mGluR1 availability using longitudinal [11C]ITDM PET imaging demonstrated higher [11C]ITDM binding in extra-striatal brain regions during the course of disease in the Q175DN mouse model.


Asunto(s)
Enfermedad de Huntington/diagnóstico por imagen , Enfermedad de Huntington/metabolismo , Tomografía de Emisión de Positrones , Receptores de Glutamato Metabotrópico/metabolismo , Animales , Benzamidas , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Tiazoles
10.
J Cereb Blood Flow Metab ; 40(6): 1351-1362, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31307287

RESUMEN

Synaptic pathology is associated with several brain disorders, thus positron emission tomography (PET) imaging of synaptic vesicle glycoprotein 2A (SV2A) using the radioligand [11C]UCB-J may provide a tool to measure synaptic alterations. Given the pivotal role of mouse models in understanding neuropsychiatric and neurodegenerative disorders, this study aims to validate and characterize [11C]UCB-J in mice. We performed a blocking study to verify the specificity of the radiotracer to SV2A, examined kinetic models using an image-derived input function (IDIF) for quantification of the radiotracer, and investigated the in vivo metabolism. Regional TACs during baseline showed rapid uptake of [11C]UCB-J into the brain. Pretreatment with levetiracetam confirmed target engagement in a dose-dependent manner. VT (IDIF) values estimated with one- and two-tissue compartmental models (1TCM and 2TCM) were highly comparable (r=0.999, p < 0.0001), with 1TCM performing better than 2TCM for K1 (IDIF). A scan duration of 60 min was sufficient for reliable VT (IDIF) and K1 (IDIF) estimations. In vivo metabolism of [11C]UCB-J was relatively rapid, with a parent fraction of 22.5 ± 4.2% at 15 min p.i. In conclusion, our findings show that [11C]UCB-J selectively binds to SV2A with optimal kinetics in the mouse representing a promising tool to noninvasively quantify synaptic density in comparative or therapeutic studies in neuropsychiatric and neurodegenerative disorder models.


Asunto(s)
Encéfalo/metabolismo , Procesamiento de Imagen Asistido por Computador/métodos , Tomografía de Emisión de Positrones/métodos , Piridinas/farmacocinética , Pirrolidinonas/farmacocinética , Vesículas Sinápticas/metabolismo , Animales , Cinética , Masculino , Glicoproteínas de Membrana/análisis , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Modelos Teóricos , Proteínas del Tejido Nervioso/análisis , Proteínas del Tejido Nervioso/metabolismo , Radiofármacos/farmacocinética
11.
Mol Imaging Biol ; 22(4): 854-863, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-31792838

RESUMEN

PURPOSE: This study aimed at investigating binding specificity, suitability of reference region-based kinetic modelling, and pharmacokinetics of the metabotropic glutamate receptor 1 (mGluR1) radioligand [11C]ITDM in mice. PROCEDURES: We performed in vivo blocking as well as displacement of [11C]ITDM during positron emission tomography (PET) imaging using the specific mGluR1 antagonist YM-202074. Additionally, we assessed in vitro blocking of [3H]ITDM at two different doses of YM-202074. As an alternative to reference region models, we validated the use of a noninvasive image-derived input function (IDIF) compared to an arterial input function measured with an invasive arteriovenous (AV) shunt using a population-based curve for radiometabolite correction and characterized the pharmacokinetic modelling of [11C]ITDM in the mouse brain. Finally, we also assessed semi-quantitative approaches. RESULTS: In vivo blocking with YM-202074 resulted in a decreased [11C]ITDM binding, ranging from - 35.8 ± 8.0 % in pons to - 65.8 ± 3.0 % in thalamus. Displacement was also markedly observed in all tested regions. In addition, in vitro [3H]ITDM binding could be blocked in a dose-dependent manner. The volume of distribution (VT) based on the noninvasive IDIF (VT (IDIF)) showed excellent agreement with the VT values based on the metabolite-corrected plasma input function regardless of the metabolite correction (r2 > 0.943, p < 0.0001). Two-tissue compartmental model (2TCM) was found to be the preferred model and showed optimal agreement with Logan plot (r2 > 0.960, p < 0.0001). A minimum scan duration of 80 min was required for proper parameter estimation. SUV was not reliable (r2 = 0.379, p = 0.0011), unlike the SUV ratio to the SUV of the input function, which showed to be a valid approach. CONCLUSIONS: No suitable reference region could be identified for [11C]ITDM as strongly supported by in vivo and in vitro evidence of specific binding in all brain regions. However, by applying appropriate kinetic models, [11C]ITDM PET imaging represents a promising tool to visualize mGluR1 in the mouse brain.


Asunto(s)
Radioisótopos de Carbono/química , Radiofármacos/química , Receptores de Glutamato Metabotrópico/metabolismo , Animales , Autorradiografía , Encéfalo/patología , Radioisótopos de Carbono/farmacocinética , Cinética , Ligandos , Masculino , Ratones Endogámicos C57BL , Estándares de Referencia , Factores de Tiempo
12.
Nucl Med Biol ; 76-77: 36-42, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31707309

RESUMEN

INTRODUCTION: Biorthogonal pretargeted imaging using the inverse electron demand Diels Alder (IEDDA) reaction between tetrazine (Tz) and trans-cyclooctene (TCO) is one of the most attractive strategies in molecular imaging. It allows the use of short-lived radioisotopes such as fluorine-18 for imaging of long circulating vectors with improved imaging contrast and reduced radiation dose. Here we aim to develop a novel 18F-labeled trans-cyclooctene (TCO) with improved metabolic stability and assess its potential usefulness in a pretargeted PET imaging approach. METHODS: We have synthetized a new TCO-analogue containing a 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA) chelator, allowing radiolabeling by chelation with aluminum fluoride (Al[18F]F). Stability and pharmacokinetic profile of Al[18F]F-NOTA-TCO ([18F]MICA-205) were evaluated in healthy animals at different timepoints after injection of the radiotracer. To assess the potential use of this new PET tracer for tumor targeting, in vivo pretargeted PET imaging was performed in LS174T tumor-bearing mice pre-treated with a tetrazine-modified anti-TAG-72 monoclonal antibody (CC49). RESULTS: The radiotracer was obtained with a radiochemical yield (RCY) of 12.8 ±â€¯2.8% and a radiochemical purity (RCP) of ≥95%. It also showed a promising in vivo stability with 51.9 ±â€¯5.16% of radiotracer remaining intact after 1 h. The biodistribution in healthy mice demonstrated mixed hepatobiliary and renal clearance, with a rapid blood clearance and low uptake in other tissues. The low bone uptake indicated lack of tracer defluorination. Interestingly, a pretargeted PET imaging experiment showed a significantly increased radiotracer uptake (0.67 ±â€¯0.16%ID/g, p < 0.001) in the tumors of mice pre-treated with CC49-tetrazine compared to the CC49 alone (0.16 ±â€¯0.08%ID/g). CONCLUSIONS: [18F]MICA-205 represents a large improvement in in vivo metabolic stability compared to previous reported 18F-labeled TCOs, allowing a clear visualization of tumor tissue in a small-animal pretargeted PET imaging experiment. Despite the favorable in vivo stability and image contrast obtained with [18F]MICA-205, the development of next-generation derivatives with increased absolute tumor uptake is warranted for future pretargeting applications.


Asunto(s)
Ciclooctanos/química , Radioisótopos de Flúor/química , Tomografía de Emisión de Positrones/métodos , Animales , Línea Celular Tumoral , Estabilidad de Medicamentos , Femenino , Humanos , Marcaje Isotópico , Cinética , Ratones , Radioquímica
13.
Alzheimers Dement ; 15(9): 1172-1182, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31405824

RESUMEN

INTRODUCTION: Dual-biomarker positron emission tomography (PET), providing complementary information on cerebral blood flow and amyloid-ß deposition, is of clinical interest for Alzheimer's disease (AD). The purpose of this study was to validate the perfusion components of early-phase 18F-florbetapir (eAV45), the 18F-AV45 delivery rate (R1), and 18F-FDG against 15O-H2O PET and assess how they change with disease severity. METHODS: This study included ten controls, 19 amnestic mild cognitive impairment, and 10 AD dementia subjects. Within-subject regional correlations between modalities, between-group regional and voxel-wise analyses of covariance per modality, and receiver operating characteristic analyses for discrimination between groups were performed. RESULTS: FDG standardized uptake value ratio, eAV45 (0-2 min) standardized uptake value ratio, and AV45-R1 were significantly associated with H2O PET (regional Pearson r = 0.54-0.82, 0.70-0.94, and 0.65-0.92, respectively; P < .001). All modalities confirmed reduced cerebral blood flow in the posterior cingulate of patients with amnestic mild cognitive impairment and AD dementia, which was associated with lower cognition (r = 0.36-0.65, P < .025) and could discriminate between patient and control groups (area under the curve > 0.80). However, eAV45 was less sensitive to reflect the disease severity than AV45-R1 or FDG. DISCUSSION: R1 is preferable over eAV45 for accurate representation of brain perfusion in dual-biomarker PET for AD.


Asunto(s)
Enfermedad de Alzheimer/fisiopatología , Compuestos de Anilina , Circulación Cerebrovascular/fisiología , Glicoles de Etileno , Fluorodesoxiglucosa F18 , Tomografía de Emisión de Positrones , Anciano , Encéfalo/fisiopatología , Disfunción Cognitiva/fisiopatología , Femenino , Humanos , Masculino , Índice de Severidad de la Enfermedad
14.
EJNMMI Res ; 9(1): 74, 2019 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-31375940

RESUMEN

BACKGROUND: In a colorectal cancer xenograft model, we investigated the therapeutic effect of metformin on tumor hypoxia with [18F]flortanidazole ([18F]HX4) small-animal positron emission tomography (µPET). We also assessed the additive effect of metformin on long-term radiotherapy outcome and we studied the potential of [18F]HX4 as a predictive and/or prognostic biomarker within this setup. METHODS: Colo205-bearing mice (n = 40) underwent a baseline [18F]HX4 hypoxia µPET/computed tomography (CT) scan. The next day, mice received 100 mg/kg metformin or saline intravenously (n = 20/group) and [18F]HX4 was administered intravenously 30 min later, whereupon a second µPET/CT scan was performed to assess changes in tumor hypoxia. Two days later, mice were further divided into four therapy groups (n = 10/group): control (1), metformin (2), radiotherapy (3), and metformin + radiotherapy, i.e., combination (4). Then, they received a second dose of metformin (groups 2 and 4) or saline (groups 1 and 3), followed by a single radiotherapy dose of 15 Gy (groups 3 and 4) or sham irradiation (groups 1 and 2) 30 min later. Tumor growth was followed three times a week by caliper measurements to assess the therapeutic outcome. RESULTS: [18F]HX4 uptake decreased in metformin-treated tumors with a mean intratumoral reduction in [18F]HX4 tumor-to-background ratio (TBR) from 2.53 ± 0.30 to 2.28 ± 0.26 (p = 0.04), as opposed to saline treatment (2.56 ± 0.39 to 3.08 ± 0.39; p = 0.2). The median tumor doubling time (TDT) was 6, 8, 41, and 43 days in the control, metformin, radiotherapy and combination group, respectively (log-rank p < 0.0001), but no metformin-specific therapy effects could be detected. Baseline [18F]HX4 TBR was a negative prognostic biomarker for TDT (hazard ratio, 2.39; p = 0.02). CONCLUSIONS: Metformin decreased [18F]HX4 uptake of Colo205-tumors, but had no additive effect on radiotherapy efficacy. Nevertheless, [18F]HX4 holds promise as a prognostic imaging biomarker.

15.
Org Biomol Chem ; 17(19): 4801-4824, 2019 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-31033991

RESUMEN

Apoptosis is a highly regulated process involved in the normal organism development and homeostasis. In the context of anticancer therapy, apoptosis is also studied intensively in an attempt to induce cell death in cancer cells. Caspase activation is a known key event in the apoptotic process. In particular, active caspase-3 and -7 are the common effectors in several apoptotic pathways, therefore effector caspase activation may be a promising biomarker for response evaluation to anticancer therapy. Quantitative imaging of apoptosis in vivo could provide early assessment of therapeutic effectiveness and could also be used in drug development to evaluate the efficacy as well as potential toxicity of novel treatments. Positron Emission Tomography (PET) is a highly sensitive molecular imaging modality that allows non-invasive in vivo imaging of biological processes such as apoptosis by using radiolabeled probes. Here we describe the development and evaluation of fluorine-18-labeled caspase-3 activity-based probes (ABPs) for PET imaging of apoptosis. ABPs were selected by screening of a small library of fluorine-19-labeled DEVD peptides containing different electrophilic warhead groups. An acyloxymethyl ketone was identified with low nanomolar affinity for caspase-3 and was radiolabeled with fluorine-18. The resulting radiotracer, [18F]MICA-302, showed good labeling of active caspase-3 in vitro and favorable pharmacokinetic properties. A µPET imaging experiment in colorectal tumor xenografts demonstrated an increased tumor accumulation of [18F]MICA-302 in drug-treated versus control animals. Therefore, our data suggest this radiotracer may be useful for clinical PET imaging of response to anticancer therapy.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Caspasa 3/metabolismo , Colorantes Fluorescentes/química , Imagen Óptica , Tomografía de Emisión de Positrones , Animales , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Humanos , Ratones , Ratones Desnudos , Neoplasias Experimentales/diagnóstico por imagen , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/metabolismo , Distribución Tisular
16.
Neuroimage Clin ; 22: 101771, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30927601

RESUMEN

Disease-modifying treatment trials are increasingly advanced to the prodromal or preclinical phase of Alzheimer's disease (AD), and inclusion criteria are based on biomarkers rather than clinical symptoms. Therefore, it is of great interest to determine which biomarkers should be combined to accurately predict conversion from mild cognitive impairment (MCI) to AD dementia. However, up to date, only few studies performed a complete A/T/N subject characterization using each of the CSF and imaging markers, or they only investigated long-term (≥ 2 years) prognosis. This study aimed to investigate the association between cerebrospinal fluid (CSF), magnetic resonance imaging (MRI), amyloid- and 18F-FDG positron emission tomography (PET) measures at baseline, in relation to cognitive changes and conversion to AD dementia over a short-term (12-month) period. We included 13 healthy controls, 49 MCI and 16 AD dementia patients with a clinical-based diagnosis and a complete A/T/N characterization at baseline. Global cortical amyloid-ß (Aß) burden was quantified using the 18F-AV45 standardized uptake value ratio (SUVR) with two different reference regions (cerebellar grey and subcortical white matter), whereas metabolism was assessed based on 18F-FDG SUVR. CSF measures included Aß1-42, Aß1-40, T-tau, P-tau181, and their ratios, and MRI markers included hippocampal volumes (HV), white matter hyperintensities, and cortical grey matter volumes. Cognitive functioning was measured by MMSE and RBANS index scores. All statistical analyses were corrected for age, sex, education, and APOE ε4 genotype. As a result, faster cognitive decline was most strongly associated with hypometabolism (posterior cingulate) and smaller hippocampal volume (e.g., Δstory recall: ß = +0.43 [p < 0.001] and + 0.37 [p = 0.005], resp.) at baseline. In addition, faster cognitive decline was significantly associated with higher baseline Aß burden only if SUVR was referenced to the subcortical white matter (e.g., Δstory recall: ß = -0.28 [p = 0.020]). Patients with MCI converted to AD dementia at an annual rate of 31%, which could be best predicted by combining neuropsychological testing (visuospatial construction skills) with either MRI-based HV or 18F-FDG-PET. Combining all three markers resulted in 96% specificity and 92% sensitivity. Neither amyloid-PET nor CSF biomarkers could discriminate short-term converters from non-converters.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides/metabolismo , Biomarcadores , Disfunción Cognitiva , Progresión de la Enfermedad , Hipocampo/patología , Anciano , Enfermedad de Alzheimer/líquido cefalorraquídeo , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/fisiopatología , Compuestos de Anilina , Disfunción Cognitiva/líquido cefalorraquídeo , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/patología , Disfunción Cognitiva/fisiopatología , Glicoles de Etileno , Femenino , Fluorodesoxiglucosa F18 , Estudios de Seguimiento , Hipocampo/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética/normas , Masculino , Persona de Mediana Edad , Tomografía de Emisión de Positrones/normas , Sensibilidad y Especificidad
17.
J Neurotrauma ; 36(5): 768-788, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30032713

RESUMEN

There is currently a lack of prognostic biomarkers to predict the different sequelae following traumatic brain injury (TBI). The present study investigated the hypothesis that subacute neuroinflammation and microstructural changes correlate with chronic TBI deficits. Rats were subjected to controlled cortical impact (CCI) injury, sham surgery, or skin incision (naïve). CCI-injured (n = 18) and sham-operated rats (n = 6) underwent positron emission tomography (PET) imaging with the translocator protein 18 kDa (TSPO) radioligand [18F]PBR111 and diffusion tensor imaging (DTI) in the subacute phase (≤3 weeks post-injury) to quantify inflammation and microstructural alterations. CCI-injured, sham-operated, and naïve rats (n = 8) underwent behavioral testing in the chronic phase (5.5-10 months post-injury): open field and sucrose preference tests, two one-week video-electroencephalogram (vEEG) monitoring periods, pentylenetetrazole (PTZ) seizure susceptibility tests, and a Morris water maze (MWM) test. In vivo imaging revealed pronounced neuroinflammation, decreased fractional anisotropy, and increased diffusivity in perilesional cortex and ipsilesional hippocampus of CCI-injured rats. Behavioral analysis revealed disinhibition, anhedonia, increased seizure susceptibility, and impaired learning in CCI-injured rats. Subacute TSPO expression and changes in DTI metrics significantly correlated with several chronic deficits (Pearson's |r| = 0.50-0.90). Certain specific PET and DTI parameters had good sensitivity and specificity (area under the receiver operator characteristic [ROC] curve = 0.85-1.00) to distinguish between TBI animals with and without particular behavioral deficits. Depending on the investigated behavioral deficit, PET or DTI data alone, or the combination, could very well predict the variability in functional outcome data (adjusted R2 = 0.54-1.00). Taken together, both TSPO PET and DTI seem promising prognostic biomarkers to predict different chronic TBI sequelae.


Asunto(s)
Lesiones Traumáticas del Encéfalo/patología , Encefalitis/patología , Neuroimagen/métodos , Recuperación de la Función , Animales , Imagen de Difusión Tensora/métodos , Masculino , Tomografía de Emisión de Positrones/métodos , Pronóstico , Ratas , Ratas Sprague-Dawley
18.
J Nucl Med ; 60(1): 34-40, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-29980581

RESUMEN

Metformin may improve tumor oxygenation and thus radiotherapy response, but imaging biomarkers for selection of suitable patients are still under investigation. First, we assessed the effect of acute metformin administration on non-small cell lung cancer xenograft tumor hypoxia using PET imaging with the hypoxia tracer 18F-flortanidazole. Second, we verified the effect of a single dose of metformin before radiotherapy on long-term treatment outcome. Third, we examined the potential of baseline 18F-flortanidazole as a prognostic or predictive biomarker for treatment response. Methods: A549 tumor-bearing mice underwent a 18F-flortanidazole PET/CT scan to determine baseline tumor hypoxia. The next day, mice received a 100 mg/kg intravenous injection of metformin. 18F-flortanidazole was administered intravenously 30 min later, and a second PET/CT scan was performed to assess changes in tumor hypoxia. Two days later, the mice were divided into 3 therapy groups: controls (group 1), radiotherapy (group 2), and metformin + radiotherapy (group 3). Animals received saline (groups 1-2) or metformin (100 mg/kg; group 3) intravenously, followed by a single radiotherapy dose of 10 Gy (groups 2-3) or sham irradiation (group 1) 30 min later. Tumor growth was monitored triweekly by caliper measurement, and tumor volume relative to baseline was calculated. The tumor doubling time (TDT), that is, the time to reach twice the preirradiation tumor volume, was defined as the endpoint. Results: Thirty minutes after metformin treatment, 18F-flortanidazole demonstrated a significant change in tumor hypoxia, with a mean intratumoral reduction in 18F-flortanidazole tumor-to-background ratio (TBR) from 3.21 ± 0.13 to 2.87 ± 0.13 (P = 0.0001). Overall, relative tumor volume over time differed across treatment groups (P < 0.0001). Similarly, the median TDT was 19, 34, and 52 d in controls, the radiotherapy group, and the metformin + radiotherapy group, respectively (log-rank P < 0.0001). Both baseline 18F-flortanidazole TBR (hazard ratio, 2.0; P = 0.0004) and change from baseline TBR (hazard ratio, 0.39; P = 0.04) were prognostic biomarkers for TDT irrespective of treatment, and baseline TBR predicted metformin-specific treatment effects that were dependent on baseline tumor hypoxia. Conclusion: Using 18F-flortanidazole PET imaging in a non-small cell lung cancer xenograft model, we showed that metformin may act as a radiosensitizer by increasing tumor oxygenation and that baseline 18F-flortanidazole shows promise as an imaging biomarker.


Asunto(s)
Azoles , Transformación Celular Neoplásica , Radioisótopos de Flúor , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/patología , Metformina/farmacología , Tomografía Computarizada por Tomografía de Emisión de Positrones , Hipoxia Tumoral , Células A549 , Animales , Azoles/farmacocinética , Biomarcadores de Tumor/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico por imagen , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/radioterapia , Femenino , Radioisótopos de Flúor/farmacocinética , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/radioterapia , Ratones , Pronóstico , Fármacos Sensibilizantes a Radiaciones/farmacología , Distribución Tisular , Resultado del Tratamiento
19.
Cell Mol Neurobiol ; 39(2): 255-263, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30552621

RESUMEN

Many PET tracers enable determination of fluctuations in neurotransmitter release, yet glutamate specifically can not be visualized in a noninvasive manner. Several studies point to the possibility of visualizing fluctuations in glutamate release by changes in affinity of the mGluR5 radioligand [11C]ABP688. These studies use pharmacological challenges to alter glutamate levels, and so probe release, but have not measured chronic alterations in receptor occupancy due to altered neurotransmission relevant to chronic neuropsychiatric disorders or their treatment. In this regard, the GLS1 heterozygous mouse has known reductions in activity of the glutamate-synthetic enzyme glutaminase, brain glutamate levels and release. We imaged this model to elucidate glutamatergic systems. Dynamic [11C]ABP688 microPET scans were performed for mGluR5. Western blot was used as an ex vivo validation. No significant differences were found in BPND between WT and GLS1 Hets. SPM showed voxel-wise increased in BPND in GLS1 Hets compared to WT consistent with lower synaptic glutamate. This was not due to alterations in mGluR5 levels, as western blot results showed lower mGluR5 levels in GLS1 Hets. We conclude that because of the chronic glutaminase deficiency and subsequent decrease in glutamate, the mGluR5 protein levels are lowered. Due to these decreased endogenous glutamate levels, however, there is increased [11C]ABP688 binding to the allosteric site in selected regions. We speculate that lower endogenous glutamate leads to less conformational change to the receptors, and thus higher availability of the binding site. The lower mGluR5 levels, however, lessen [11C]ABP688 binding in GLS1 Hets, in part masking the increase in binding due to diminished endogenous glutamate levels as confirmed with voxel-wise analysis.


Asunto(s)
Radioisótopos de Carbono/química , Glutaminasa/metabolismo , Imagen Molecular , Oximas/química , Piridinas/química , Receptor del Glutamato Metabotropico 5/metabolismo , Animales , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Glutamina/metabolismo , Heterocigoto , Ratones
20.
Brain Behav Immun ; 77: 46-54, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30503836

RESUMEN

OBJECTIVE: To determine whether state-associated changes in microglial activity, measured with translocator-protein positron emission tomography (TSPO PET), can be identified in psychosis patients through longitudinal evaluation of their regional tracer uptake over the clinical course from acute psychosis to post-treatment follow-up, and comparison to healthy controls. We also evaluated the relation between tracer uptake, clinical symptoms and peripheral immunological markers. METHOD: Second-generation radioligand [18F]-PBR111 TSPO PET-CT was used for longitudinal dynamic imaging in 14 male psychosis patients and 17 male age-matched healthy control subjects. Patients were first scanned during an acute psychotic episode followed by a second scan after treatment. Prior genotyping of subjects for the rs6917 polymorphism distinguished high- and mixed-affinity binders. The main outcome was regional volume of distribution (VT), representing TSPO binding. Plasma concentrations of CRP, cytokines and kynurenines were measured at each timepoint. RESULTS: We found a significant three-way interaction between time of scan, age and cohort (cortical grey matter F6.50, p.020). Age-dependent differences in VT existed between cohorts during the psychotic state, but not at follow-up. Patients' relative change in VT over time correlated with age (cortical grey matter Pearson's r.574). PANSS positive subscale scores correlated with regional VT during psychosis (cortical grey matter r.767). Plasma CRP and quinolinic acid were independently associated with lower VT. CONCLUSIONS: We identified a differential age-dependent pattern of TSPO binding from psychosis to follow-up in our cohort of male psychosis patients. We recommend future TSPO PET studies in psychosis patients to differentiate between clinical states and consider potential age-related effects.


Asunto(s)
Trastornos Psicóticos/diagnóstico por imagen , Trastornos Psicóticos/metabolismo , Receptores de GABA/metabolismo , Adulto , Factores de Edad , Encéfalo/metabolismo , Estudios de Casos y Controles , Citocinas/análisis , Radioisótopos de Flúor , Sustancia Gris/metabolismo , Humanos , Quinurenina/metabolismo , Estudios Longitudinales , Masculino , Microglía/metabolismo , Microglía/fisiología , Persona de Mediana Edad , Neuroinmunomodulación/fisiología , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA