RESUMEN
New and improved drugs are required for the treatment and ultimate eradication of malaria. The efficacy of front-line therapies is now threatened by emerging drug resistance; thus, new tools to support the development of drugs with a lower propensity for resistance are needed. Here, we describe the development of a RESistance Mapping And Profiling (ResMAP) platform for the identification of resistance-conferring mutations in Plasmodium drug targets. Proof-of-concept studies focused on interrogating the antimalarial drug target, Plasmodium falciparum lysyl tRNA synthetase (PfKRS). Saturation mutagenesis was used to construct a plasmid library encoding all conceivable mutations within a 20-residue span at the base of the PfKRS ATP-binding pocket. The superior transfection efficiency of Plasmodium knowlesi was exploited to generate a high coverage parasite library expressing PfKRS bearing all possible amino acid changes within this region of the enzyme. The selection of the library with PfKRS inhibitors, cladosporin and DDD01510706, successfully identified multiple resistance-conferring substitutions. Genetic validation of a subset of these mutations confirmed their direct role in resistance, with computational modeling used to dissect the structural basis of resistance. The application of ResMAP to inform the development of resistance-resilient antimalarials of the future is discussed. IMPORTANCE: An increase in treatment failures for malaria highlights an urgent need for new tools to understand and minimize the spread of drug resistance. We describe the development of a RESistance Mapping And Profiling (ResMAP) platform for the identification of resistance-conferring mutations in Plasmodium spp, the causative agent of malaria. Saturation mutagenesis was used to generate a mutation library containing all conceivable mutations for a region of the antimalarial-binding site of a promising drug target, Plasmodium falciparum lysyl tRNA synthetase (PfKRS). Screening of this high-coverage library with characterized PfKRS inhibitors revealed multiple resistance-conferring substitutions including several clinically relevant mutations. Genetic validation of these mutations confirmed resistance of up to 100-fold and computational modeling dissected their role in drug resistance. We discuss potential applications of this data including the potential to design compounds that can bypass the most serious resistance mutations and future resistance surveillance.
Asunto(s)
Antimaláricos , Resistencia a Medicamentos , Mutagénesis , Plasmodium falciparum , Resistencia a Medicamentos/genética , Antimaláricos/farmacología , Plasmodium falciparum/genética , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/enzimología , Mutación , Lisina-ARNt Ligasa/genética , Lisina-ARNt Ligasa/metabolismo , Plasmodium knowlesi/genética , Plasmodium knowlesi/efectos de los fármacos , Plasmodium knowlesi/enzimología , HumanosRESUMEN
A series of 61 thiazolidine-2,4-diones bearing a styryl group at position 5 was synthesized in 2-5 steps and their structure was proved by elemental and spectral analyses. The compounds obtained were evaluated in vitro against the promastigote stage of the kinetoplastid parasite Leishmania infantum and the human HepG2 cell line, to determine selectivity indices and to compare their activities with those of antileishmanial reference drugs. The study of structure-activity relationships indicated the potential of some derivatives bearing a nitro group on the phenyl ring, especially when located at the meta position. Thus, among the tested series, compound 14c appeared as a hit compound with good antileishmanial activity (EC50 = 7 µM) and low cytotoxicity against both the hepatic HepG2 and macrophage THP-1 human cell lines (CC50 = 101 and 121 µM, respectively), leading to good selectivity indices (respectively, 14 and 17), in comparison with the reference antileishmanial drug compound miltefosine (EC50 = 3.3 µM, CC50 = 85 and 30 µM, SI = 26 and 9). Regarding its mechanism of action, among several possibilities, it was demonstrated that compound 14c is a prodrug bioactivated, predominantly by L. donovani nitroreductase 1, likely leading to the formation of cytotoxic metabolites that form covalent adducts in the parasite. Finally, compound 14c is lipophilic (measured CHI LogD7.7 = 2.85) but remains soluble in water (measured PBS solubility at pH7.4 = 16 µM), highlighting the antileishmanial potential of the nitrostyrylthiazolidine-2,4-dione scaffold.
RESUMEN
Liposomal amphotericin B is an important frontline drug for the treatment of visceral leishmaniasis, a neglected disease of poverty. The mechanism of action of amphotericin B (AmB) is thought to involve interaction with ergosterol and other ergostane sterols, resulting in disruption of the integrity and key functions of the plasma membrane. Emergence of clinically refractory isolates of Leishmania donovani and L. infantum is an ongoing issue and knowledge of potential resistance mechanisms can help to alleviate this problem. Here we report the characterisation of four independently selected L. donovani clones that are resistant to AmB. Whole genome sequencing revealed that in three of the moderately resistant clones, resistance was due solely to the deletion of a gene encoding C24-sterol methyltransferase (SMT1). The fourth, hyper-resistant resistant clone (>60-fold) was found to have a 24 bp deletion in both alleles of a gene encoding a putative cytochrome P450 reductase (P450R1). Metabolic profiling indicated these parasites were virtually devoid of ergosterol (0.2% versus 18% of total sterols in wild-type) and had a marked accumulation of 14-methylfecosterol (75% versus 0.1% of total sterols in wild-type) and other 14-alpha methylcholestanes. These are substrates for sterol 14-alpha demethylase (CYP51) suggesting that this enzyme may be a bona fide P450R specifically involved in electron transfer from NADPH to CYP51 during catalysis. Deletion of P450R1 in wild-type cells phenocopied the metabolic changes observed in our AmB hyper-resistant clone as well as in CYP51 nulls. Likewise, addition of a wild type P450R1 gene restored sterol profiles to wild type. Our studies indicate that P450R1 is essential for L. donovani amastigote viability, thus loss of this gene is unlikely to be a driver of clinical resistance. Nevertheless, investigating the mechanisms underpinning AmB resistance in these cells provided insights that refine our understanding of the L. donovani sterol biosynthetic pathway.
Asunto(s)
Resistencia a Medicamentos , Leishmania donovani , Leishmaniasis Visceral , Esterol 14-Desmetilasa , Leishmania donovani/enzimología , Esterol 14-Desmetilasa/metabolismo , Esterol 14-Desmetilasa/genética , Leishmaniasis Visceral/parasitología , Leishmaniasis Visceral/tratamiento farmacológico , Anfotericina B/farmacología , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/genética , NADPH-Ferrihemoproteína Reductasa/metabolismo , NADPH-Ferrihemoproteína Reductasa/genética , Antiprotozoarios/farmacología , Humanos , Ergosterol/metabolismoRESUMEN
Leishmaniasis is a neglected tropical disease; there is currently no vaccine and treatment is reliant upon a handful of drugs suffering from multiple issues including toxicity and resistance. There is a critical need for development of new fit-for-purpose therapeutics, with reduced toxicity and targeting new mechanisms to overcome resistance. One enzyme meriting investigation as a potential drug target in Leishmania is M17 leucyl-aminopeptidase (LAP). Here, we aimed to chemically validate LAP as a drug target in L. major through identification of potent and selective inhibitors. Using RapidFire mass spectrometry, the compounds DDD00057570 and DDD00097924 were identified as selective inhibitors of recombinant Leishmania major LAP activity. Both compounds inhibited in vitro growth of L. major and L. donovani intracellular amastigotes, and overexpression of LmLAP in L. major led to reduced susceptibility to DDD00057570 and DDD00097924, suggesting that these compounds specifically target LmLAP. Thermal proteome profiling revealed that these inhibitors thermally stabilized two M17 LAPs, indicating that these compounds selectively bind to enzymes of this class. Additionally, the selectivity of the inhibitors to act on LmLAP and not against the human ortholog was demonstrated, despite the high sequence similarities LAPs of this family share. Collectively, these data confirm LmLAP as a promising therapeutic target for Leishmania spp. that can be selectively inhibited by drug-like small molecules.
Asunto(s)
Antiprotozoarios , Leishmania major , Proteínas Protozoarias , Animales , Humanos , Antiprotozoarios/farmacología , Antiprotozoarios/química , Leishmania donovani/enzimología , Leishmania donovani/efectos de los fármacos , Leishmania donovani/genética , Leishmania major/enzimología , Leishmania major/efectos de los fármacos , Leishmania major/genética , Proteínas Protozoarias/antagonistas & inhibidores , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismoRESUMEN
Chagas disease, caused by the protozoan parasite Trypanosoma cruzi, affects millions of people in the Americas and across the world, leading to considerable morbidity and mortality. Current treatment options, benznidazole (BNZ) and nifurtimox, offer limited efficacy and often lead to adverse side effects because of long treatment durations. Better treatment options are therefore urgently required. Here, we describe a pyrrolopyrimidine series, identified through phenotypic screening, that offers an opportunity to improve on current treatments. In vitro cell-based washout assays demonstrate that compounds in the series are incapable of killing all parasites; however, combining these pyrrolopyrimidines with a subefficacious dose of BNZ can clear all parasites in vitro after 5 days. These findings were replicated in a clinically predictive in vivo model of chronic Chagas disease, where 5 days of treatment with the combination was sufficient to prevent parasite relapse. Comprehensive mechanism of action studies, supported by ligand-structure modeling, show that compounds from this pyrrolopyrimidine series inhibit the Qi active site of T. cruzi cytochrome b, part of the cytochrome bc1 complex of the electron transport chain. Knowledge of the molecular target enabled a cascade of assays to be assembled to evaluate selectivity over the human cytochrome b homolog. As a result, a highly selective and efficacious lead compound was identified. The combination of our lead compound with BNZ rapidly clears T. cruzi parasites, both in vitro and in vivo, and shows great potential to overcome key issues associated with currently available treatments.
Asunto(s)
Enfermedad de Chagas , Parásitos , Tripanocidas , Trypanosoma cruzi , Animales , Humanos , Citocromos b , Tripanocidas/efectos adversos , Enfermedad de Chagas/tratamiento farmacológico , Enfermedad de Chagas/inducido químicamente , Enfermedad de Chagas/parasitologíaRESUMEN
New drugs for visceral leishmaniasis that are safe, low cost, and adapted to the field are urgently required. Despite concerted efforts over the last several years, the number of new chemical entities that are suitable for clinical development for the treatment of Leishmania remains low. Here, we describe the discovery and preclinical development of DNDI-6174, an inhibitor of Leishmania cytochrome bc1 complex activity that originated from a phenotypically identified pyrrolopyrimidine series. This compound fulfills all target candidate profile criteria required for progression into preclinical development. In addition to good metabolic stability and pharmacokinetic properties, DNDI-6174 demonstrates potent in vitro activity against a variety of Leishmania species and can reduce parasite burden in animal models of infection, with the potential to approach sterile cure. No major flags were identified in preliminary safety studies, including an exploratory 14-day toxicology study in the rat. DNDI-6174 is a cytochrome bc1 complex inhibitor with acceptable development properties to enter preclinical development for visceral leishmaniasis.
Asunto(s)
Leishmaniasis Visceral , Leishmaniasis , Ratas , Animales , Leishmaniasis Visceral/tratamiento farmacológico , Leishmaniasis Visceral/parasitología , Modelos Animales de EnfermedadRESUMEN
Visceral leishmaniasis (VL) is a parasitic disease endemic across multiple regions of the world and is fatal if untreated. New therapeutic options with diverse mechanisms of actions (MoAs) are required to consolidate progress toward control of this disease and combat drug resistance. Here, we describe the development of a scalable resistance library screen (RES-Seq) as a tool to facilitate the identification and prioritization of anti-leishmanial compounds acting via novel MoA. We have amassed a large collection of Leishmania donovani cell lines resistant to frontline drugs and compounds in the VL pipeline, with resistance-conferring mutations fully characterized. New phenotypic hits screened against this highly curated panel of resistant lines can determine cross-resistance and potentially shared MoA. The ability to efficiently identify compounds acting via previously established MoA is vital to maintain diversity within drug development portfolios. To expedite screening, short identifier DNA barcodes were introduced into resistant clones enabling pooling and simultaneous screening of multiple cell lines. Illumina sequencing of barcodes enables the growth kinetics and relative fitness of multiple cell lines under compound selection to be tracked. Optimal conditions allowing discrimination of resistant and sensitive clones were established (3× and 10× EC50 for 3 days) and applied to screening of a complex library with VL preclinical and clinical drug candidates. RES-Seq is set to play an important role in ensuring that anti-leishmanial compounds exploiting diverse mechanisms of action are developed, ultimately providing options for future drug combination strategies.IMPORTANCEVisceral leishmaniasis (VL) remains the third largest parasitic killer worldwide, responsible for 20,000-30,000 deaths each year. Control and ultimate elimination of VL will require a range of therapeutic options with diverse mechanisms of action to combat drug resistance. One approach to ensure that compounds in development exploit diverse mechanisms of action is to screen them against highly curated cell lines resistant to drugs already in the VL pipeline. The identification of cross-resistant cell lines indicates that test compounds are likely acting via previously established mechanisms. Current cross-resistance screens are limited by the requirement to profile individual resistant cell lines one at a time. Here, we introduce unique DNA barcodes into multiple resistant cell lines to facilitate parallel profiling. Utilizing the power of Illumina sequencing, growth kinetics and relative fitness under compound selection can be monitored revolutionizing our ability to identify and prioritize compounds acting via novel mechanisms.
RESUMEN
Understanding the target and mode of action of compounds identified by phenotypic screening can greatly facilitate the process of drug discovery and development. Here, we outline the tools currently available for target identification against the neglected tropical diseases, human African trypanosomiasis, visceral leishmaniasis and Chagas' disease. We provide examples how these tools can be used to identify and triage undesirable mechanisms, to identify potential toxic liabilities in patients and to manage a balanced portfolio of target-based campaigns. We review the primary targets of drugs that are currently in clinical development that were initially identified via phenotypic screening, and whose modes of action affect protein turnover, RNA trans-splicing or signalling in these protozoan parasites.
RESUMEN
Introduction: Cryptosporidiosis is a leading cause of diarrheal-associated morbidity and mortality, predominantly affecting children under 5 years old in low-and-middle-income countries. There is no effective treatment and no vaccine. New therapeutics are emerging from drug discovery efforts. It is critical that mode of action studies are performed alongside drug discovery to ensure the best clinical outcomes. Unfortunately, technology to identify and validate drug targets for Cryptosporidium is severely lacking. Methods: We used C. parvum lysyl-tRNA synthetase (CpKRS) and DDD01510706 as a target-compound pair to develop both chemical and genetic tools for mode of action studies for Cryptosporidium. We adapted thermal proteome profiling (TPP) for Cryptosporidium, an unbiased approach for target identification. Results: Using TPP we identified the molecular target of DDD01510706 and confirm that it is CpKRS. Genetic tools confirm that CpKRS is expressed throughout the life cycle and that this target is essential for parasite survival. Parasites genetically modified to over-express CpKRS or parasites with a mutation at the compound-binding site are resistant to treatment with DDD01510706. We leveraged these mutations to generate a second drug selection marker for genetic modification of Cryptosporidium, KRSR. This second selection marker is interchangeable with the original selection marker, NeoR, and expands the range of reverse genetic approaches available to study parasite biology. Due to the sexual nature of the Cryptosporidium life cycle, parental strains containing different drug selection markers can be crossed in vivo. Discussion: Selection with both drug markers produces highly efficient genetic crosses (>99% hybrid progeny), paving the way for forward genetics approaches in Cryptosporidium.
Asunto(s)
Criptosporidiosis , Cryptosporidium , Lisina-ARNt Ligasa , Niño , Humanos , Preescolar , Cryptosporidium/genética , Criptosporidiosis/tratamiento farmacológico , Lisina-ARNt Ligasa/genética , Sitios de Unión , Diarrea , Propionibacterium acnesRESUMEN
While treatment options for human African trypanosomiasis (HAT) have improved significantly, there is still a need for new drugs with eradication now a realistic possibility. Here, we report the development of 2,4-diaminothiazoles that demonstrate significant potency against Trypanosoma brucei, the causative agent of HAT. Using phenotypic screening to guide structure-activity relationships, potent drug-like inhibitors were developed. Proof of concept was established in an animal model of the hemolymphatic stage of HAT. To treat the meningoencephalitic stage of infection, compounds were optimized for pharmacokinetic properties, including blood-brain barrier penetration. However, in vivo efficacy was not achieved, in part due to compounds evolving from a cytocidal to a cytostatic mechanism of action. Subsequent studies identified a nonessential kinase involved in the inositol biosynthesis pathway as the molecular target of these cytostatic compounds. These studies highlight the need for cytocidal drugs for the treatment of HAT and the importance of static-cidal screening of analogues.
Asunto(s)
Citostáticos , Tripanocidas , Trypanosoma brucei brucei , Tripanosomiasis Africana , Animales , Humanos , Tripanosomiasis Africana/tratamiento farmacológico , Tripanocidas/uso terapéutico , Tripanocidas/farmacocinética , Citostáticos/uso terapéutico , Barrera HematoencefálicaRESUMEN
Identifying how small molecules act to kill malaria parasites can lead to new "chemically validated" targets. By pressuring Plasmodium falciparum asexual blood stage parasites with three novel structurally-unrelated antimalarial compounds (MMV665924, MMV019719 and MMV897615), and performing whole-genome sequence analysis on resistant parasite lines, we identify multiple mutations in the P. falciparum acyl-CoA synthetase (ACS) genes PfACS10 (PF3D7_0525100, M300I, A268D/V, F427L) and PfACS11 (PF3D7_1238800, F387V, D648Y, and E668K). Allelic replacement and thermal proteome profiling validates PfACS10 as a target of these compounds. We demonstrate that this protein is essential for parasite growth by conditional knockdown and observe increased compound susceptibility upon reduced expression. Inhibition of PfACS10 leads to a reduction in triacylglycerols and a buildup of its lipid precursors, providing key insights into its function. Analysis of the PfACS11 gene and its mutations point to a role in mediating resistance via decreased protein stability.
Asunto(s)
Antimaláricos , Malaria Falciparum , Humanos , Plasmodium falciparum/metabolismo , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/parasitología , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Mutación , Ligasas/metabolismoRESUMEN
Here, we provide a protocol using chemical pulldown combined with mass spectrometry (LC-MS/MS) to identify drug targets in Plasmodium falciparum. This approach works upon the principle that a resin-bound inhibitor selectively binds its molecular target(s) in cell-free lysates. We describe the preparation of drug beads and P. falciparum lysate, followed by chemical pulldown, sample fractionation, and LC-MS/MS analysis. We then detail how to identify specifically bound proteins by comparing protein enrichment in DMSO-treated relative to drug-treated lysates via quantitative proteomics. For complete details on the use and execution of this protocol, please refer to Milne et al. (2022).1.
Asunto(s)
Antimaláricos , Cromatografía Liquida/métodos , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Antimaláricos/metabolismo , Espectrometría de Masas en Tándem/métodos , Proteínas/metabolismo , Plasmodium falciparumRESUMEN
Leishmaniasis (visceral and cutaneous), Chagas disease and human African trypanosomiasis cause substantial death and morbidity, particularly in low- and middle-income countries. Although the situation has improved for human African trypanosomiasis, there remains an urgent need for new medicines to treat leishmaniasis and Chagas disease; the clinical development pipeline is particularly sparse for Chagas disease. In this Review, we describe recent advances in our understanding of the biology of the causative pathogens, particularly from the drug discovery perspective, and we explore the progress that has been made in the development of new drug candidates and the identification of promising molecular targets. We also explore the challenges in developing new clinical candidates and discuss potential solutions to overcome such hurdles.
Asunto(s)
Enfermedad de Chagas , Leishmaniasis , Tripanosomiasis Africana , Animales , Humanos , Tripanosomiasis Africana/tratamiento farmacológico , Enfermedad de Chagas/tratamiento farmacológico , Leishmaniasis/tratamiento farmacológico , Descubrimiento de DrogasRESUMEN
The antileishmanial activity of a series of (Z)-2-(heteroarylmethylene)-3(2H)-benzofuranone derivatives, possessing 5-nitroimidazole or 4-nitroimidazole moieties, was investigated against Leishmania major promastigotes and some analogues exhibited prominent activities. Compounds with IC50 values lower than 20 µM were further examined against L. donovani axenic amastigotes. Evaluated analogues in 5-nitroimidazole subgroup demonstrated significantly superior activity (~17-88-folds) against L. donovani in comparison to L. major. (Z)-7-Methoxy-2-(1-methyl-5-nitroimidazole-2-ylmethylene)-3(2H)-benzofuranone (5n) showed the highest L. donovani anti-axenic amastigote activity with IC50 of 0.016 µM. The cytotoxicity of these analogues was determined using PMM peritoneal mouse macrophage and THP-1 human leukemia monocytic cell lines and high selectivity indices of 26 to 431 were obtained for their anti-axenic amastigote effect over the cytotoxicity on PMM cells. Further studies on their mode of action showed that 5-nitroimidazole compounds were bioactivated predominantly by nitroreductase 1 (NTR1) and 4-nitroimidazole analogues by both NTR1 and 2. It is likely that this bioactivation results in the production of nitroso and hydroxylamine metabolites that are cytotoxic for the Leishmania parasite.
Asunto(s)
Antiprotozoarios , Leishmania donovani , Nitroimidazoles , Humanos , Ratones , Animales , Antiprotozoarios/farmacología , Antiprotozoarios/metabolismo , Nitroimidazoles/farmacología , Nitroimidazoles/metabolismo , Macrófagos , Nitrorreductasas/metabolismoRESUMEN
There is a pressing need for new medicines to prevent and treat malaria. Most antimalarial drug discovery is reliant upon phenotypic screening. However, with the development of improved target validation strategies, target-focused approaches are now being utilized. Here, we describe the development of a toolkit to support the therapeutic exploitation of a promising target, lysyl tRNA synthetase (PfKRS). The toolkit includes resistant mutants to probe resistance mechanisms and on-target engagement for specific chemotypes; a hybrid KRS protein capable of producing crystals suitable for ligand soaking, thus providing high-resolution structural information to guide compound optimization; chemical probes to facilitate pulldown studies aimed at revealing the full range of specifically interacting proteins and thermal proteome profiling (TPP); as well as streamlined isothermal TPP methods to provide unbiased confirmation of on-target engagement within a biologically relevant milieu. This combination of tools and methodologies acts as a template for the development of future target-enabling packages.
Asunto(s)
Antimaláricos , Lisina-ARNt Ligasa , Malaria , Antimaláricos/química , Antimaláricos/farmacología , Descubrimiento de Drogas , Humanos , Lisina-ARNt Ligasa/química , Lisina-ARNt Ligasa/genética , Lisina-ARNt Ligasa/metabolismo , Plasmodium falciparum/metabolismoRESUMEN
Artemisinin-based combination therapies have been crucial in driving down the global burden of malaria, the world's largest parasitic killer. However, their efficacy is now threatened by the emergence of resistance in Southeast Asia and sub-Saharan Africa. Thus, there is a pressing need to develop new antimalarials with diverse mechanisms of action. One area of Plasmodium metabolism that has recently proven rich in exploitable antimalarial targets is protein synthesis, with a compound targeting elongation factor 2 now in clinical development and inhibitors of several aminoacyl-tRNA synthetases in lead optimization. Given the promise of these components of translation as viable drug targets, we rationalized that an assay containing all functional components of translation would be a valuable tool for antimalarial screening and drug discovery. Here, we report the development and validation of an assay platform that enables specific inhibitors of Plasmodium falciparum translation (PfIVT) to be identified. The primary assay in this platform monitors the translation of a luciferase reporter in a P. falciparum lysate-based expression system. Hits identified in this primary assay are assessed in a counterscreen assay that enables false positives that directly interfere with the luciferase to be triaged. The remaining hit compounds are then assessed in an equivalent human IVT assay. This platform of assays was used to screen MMV's Pandemic and Pathogen Box libraries, identifying several selective inhibitors of protein synthesis. We believe this new high-throughput screening platform has the potential to greatly expedite the discovery of antimalarials that act via this highly desirable mechanism of action.
Asunto(s)
Antimaláricos , Malaria Falciparum , Malaria , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Descubrimiento de Drogas , Ensayos Analíticos de Alto Rendimiento , Humanos , Malaria/tratamiento farmacológico , Malaria Falciparum/tratamiento farmacológico , Plasmodium falciparum/genéticaRESUMEN
Trypanosomatids cause the neglected tropical diseases, sleeping sickness, Chagas disease and the leishmaniases. Studies on these lethal parasites would be further facilitated by new and improved genetic technologies. Scalable precision editing methods, for example, could be used to improve our understanding of potential mutations associated with drug resistance, a current priority given that several new anti-trypanosomal drugs, with known targets, are currently in clinical development. We report the development of a simple oligo targeting method for rapid and precise editing of priority drug targets in otherwise wild type trypanosomatids. In Trypanosoma brucei, approx. 50-b single-stranded oligodeoxynucleotides were optimal, multiple base edits could be incorporated, and editing efficiency was substantially increased when mismatch repair was suppressed. Resistance-associated edits were introduced in T. brucei cyclin dependent kinase 12 (CRK12, L482F) or cleavage and polyadenylation specificity factor 3 (N232H), in the Trypanosoma cruzi proteasome ß5 subunit (G208S), or in Leishmania donovani CRK12 (G572D). We further implemented oligo targeting for site saturation mutagenesis, targeting codon G492 in T. brucei CRK12. This approach, combined with amplicon sequencing for codon variant scoring, revealed fourteen resistance conferring G492 edits encoding six distinct amino acids. The outputs confirm on-target drug activity, reveal a variety of resistance-associated mutations, and facilitate rapid assessment of potential impacts on drug efficacy.
Asunto(s)
Parásitos , Trypanosoma brucei brucei , Trypanosoma cruzi , Animales , Codón/metabolismo , Resistencia a Medicamentos/genética , Mutación , Parásitos/genética , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo , Trypanosoma cruzi/genéticaRESUMEN
African animal trypanosomiasis or nagana, caused principally by infection of the protozoan parasites Trypanosoma congolense and Trypanosoma vivax, is a major problem in cattle and other livestocks in sub-Saharan Africa. Current treatments are threatened by the emergence of drug resistance and there is an urgent need for new, effective drugs. Here, we report the repositioning of a compound series initially developed for the treatment of human African trypanosomiasis. A medicinal chemistry program, focused on deriving more soluble analogues, led to development of a lead compound capable of curing cattle infected with both T. congolense and T. vivax via intravenous dosing. Further optimization has the potential to yield a single-dose intramuscular treatment for this disease. Comprehensive mode of action studies revealed that the molecular target of this promising compound and related analogues is the cyclin-dependent kinase CRK12.