Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Animals (Basel) ; 13(12)2023 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-37370478

RESUMEN

Gaining insights into the utilization of farm-level data for decision-making within the beef industry is vital for improving production and profitability. In this study, we present a statistical model to predict the carcass weight (CW) of grass-fed beef cattle at different stages before slaughter using historical cattle data. Models were developed using two approaches: boosted regression trees and multiple linear regression. A sample of 2995 grass-fed beef cattle from 3 major properties in Northern Australia was used in the modeling. Four timespans prior to the slaughter, i.e., 1 month, 3 months, 9-10 months, and at weaning, were considered in the predictive modelling. Seven predictors, i.e., weaning weight, weight gain since weaning to each stage before slaughter, time since weaning to each stage before slaughter, breed, sex, weaning season (wet and dry), and property, were used as the potential predictors of the CW. To assess the predictive performance in each scenario, a test set which was not used to train the models was utilized. The results showed that the CW of the cattle was strongly associated with the animal's body weight at each stage before slaughter. The results showed that the CW can be predicted with a mean absolute percentage error (MAPE) of 4% (~12-16 kg) at three months before slaughter. The predictive error increased gradually when moving away from the slaughter date, e.g., the prediction error at weaning was ~8% (~20-25 kg). The overall predictive performances of the two statistical approaches was approximately similar, and neither of the models substantially outperformed each other. Predicting the CW in advance of slaughter may allow farmers to adequately prepare for forthcoming needs at the farm level, such as changing husbandry practices, control inventory, and estimate price return, thus allowing them to maximize the profitability of the industry.

2.
J Med Internet Res ; 25: e42615, 2023 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-37000497

RESUMEN

BACKGROUND: The promise of digital health is principally dependent on the ability to electronically capture data that can be analyzed to improve decision-making. However, the ability to effectively harness data has proven elusive, largely because of the quality of the data captured. Despite the importance of data quality (DQ), an agreed-upon DQ taxonomy evades literature. When consolidated frameworks are developed, the dimensions are often fragmented, without consideration of the interrelationships among the dimensions or their resultant impact. OBJECTIVE: The aim of this study was to develop a consolidated digital health DQ dimension and outcome (DQ-DO) framework to provide insights into 3 research questions: What are the dimensions of digital health DQ? How are the dimensions of digital health DQ related? and What are the impacts of digital health DQ? METHODS: Following the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines, a developmental systematic literature review was conducted of peer-reviewed literature focusing on digital health DQ in predominately hospital settings. A total of 227 relevant articles were retrieved and inductively analyzed to identify digital health DQ dimensions and outcomes. The inductive analysis was performed through open coding, constant comparison, and card sorting with subject matter experts to identify digital health DQ dimensions and digital health DQ outcomes. Subsequently, a computer-assisted analysis was performed and verified by DQ experts to identify the interrelationships among the DQ dimensions and relationships between DQ dimensions and outcomes. The analysis resulted in the development of the DQ-DO framework. RESULTS: The digital health DQ-DO framework consists of 6 dimensions of DQ, namely accessibility, accuracy, completeness, consistency, contextual validity, and currency; interrelationships among the dimensions of digital health DQ, with consistency being the most influential dimension impacting all other digital health DQ dimensions; 5 digital health DQ outcomes, namely clinical, clinician, research-related, business process, and organizational outcomes; and relationships between the digital health DQ dimensions and DQ outcomes, with the consistency and accessibility dimensions impacting all DQ outcomes. CONCLUSIONS: The DQ-DO framework developed in this study demonstrates the complexity of digital health DQ and the necessity for reducing digital health DQ issues. The framework further provides health care executives with holistic insights into DQ issues and resultant outcomes, which can help them prioritize which DQ-related problems to tackle first.


Asunto(s)
Exactitud de los Datos , Hospitales , Humanos , Atención a la Salud
3.
J Biomed Inform ; 129: 104056, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35337944

RESUMEN

The composition and volume of patients treated in a hospital, i.e., the patient case-mix, directly impacts resource utilisation. Despite advances in technology, existing case-mix planning approaches are mostly manual. In this paper, we report on a solution that was developed in collaboration with the Queensland Children's Hospital for supporting its case-mix planning using process mining. We investigated (1) How can process mining capabilities be used to inform hospital case-mix planning?, and (2) How can process data be used to assess hospital capacity assessment and inform hospital case-mix planning? The major contributions of this paper include (i) an automated workflow to support both process mining analysis, and capacity assessment, (ii) a process mining analysis designed to detect process performance and variations, and (iii) a novel capacity assessment model based on limiting-resource saturation.


Asunto(s)
Ciencia de los Datos , Grupos Diagnósticos Relacionados , Niño , Hospitales , Humanos , Flujo de Trabajo
4.
Artif Intell Med ; 109: 101962, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-34756220

RESUMEN

Healthcare organizations are confronted with challenges including the contention between tightening budgets and increased care needs. In the light of these challenges, they are becoming increasingly aware of the need to improve their processes to ensure quality of care for patients. To identify process improvement opportunities, a thorough process analysis is required, which can be based on real-life process execution data captured by health information systems. Process mining is a research field that focuses on the development of techniques to extract process-related insights from process execution data, providing valuable and previously unknown information to instigate evidence-based process improvement in healthcare. However, despite the potential of process mining, its uptake in healthcare organizations outside case studies in a research context is rather limited. This observation was the starting point for an international brainstorm seminar. Based on the seminar's outcomes and with the ambition to stimulate a more widespread use of process mining in healthcare, this paper formulates recommendations to enhance the usability and understandability of process mining in healthcare. These recommendations are mainly targeted towards process mining researchers and the community to consider when developing a new research agenda for process mining in healthcare. Moreover, a limited number of recommendations are directed towards healthcare organizations and health information systems vendors, when shaping an environment to enable the continuous use of process mining.


Asunto(s)
Atención a la Salud , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...