Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Cancer Drug Resist ; 7: 19, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38835347

RESUMEN

Aim: Multidrug resistance (MDR) is frequent in non-small cell lung cancer (NSCLC) patients, which can be due to its fibrotic stroma. This work explores the combination of pentoxifylline, an anti-fibrotic and chitinase 3-like-1 (CHI3L1) inhibitor drug, with conventional chemotherapy to improve NSCLC treatment. Methods: The effect of pentoxifylline in the expression levels of P-glycoprotein (P-gp), CHI3L1 and its main downstream proteins, as well as on cell death, cell cycle profile, and P-gp activity was studied in two pairs of sensitive and MDR counterpart NSCLC cell lines (NCI-H460/NCI-H460/R and A549/A549-CDR2). Association studies between CHI3L1 gene expression and NSCLC patients' survival were performed using The Cancer Genome Atlas (TCGA) analysis. The sensitizing effect of pentoxifylline to different drug regimens was evaluated in both sensitive and MDR NSCLC cell lines. The cytotoxicity of the drug combinations was assessed in MCF10A non-tumorigenic cells. Results: Pentoxifylline slightly decreased the expression levels of CHI3L1, ß-catenin and signal transducer and activator of transcription 3 (STAT3), and caused a significant increase in the G1 phase of the cell cycle in both pairs of NSCLC cell lines. A significant increase in the % of cell death was observed in the sensitive NCI-H460 cell line. TCGA analysis revealed that high levels of CHI3L1 are associated with low overall survival (OS) in NSCLC patients treated with vinorelbine. Moreover, pentoxifylline sensitized both pairs of sensitive and MDR NSCLC cell lines to the different drug regimens, without causing significant toxicity to non-tumorigenic cells. Conclusion: This study suggests the possibility of combining pentoxifylline with chemotherapy to increase NSCLC therapeutic response, even in cases of MDR.

2.
Int J Mol Sci ; 25(2)2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38256165

RESUMEN

Cancer is one of the primary global causes of death, thus addressing cancer therapy remains a significant challenge, especially in cases where cancers exhibit resistance to treatment [...].


Asunto(s)
Reposicionamiento de Medicamentos , Neoplasias , Humanos , Neoplasias/tratamiento farmacológico
3.
Eur J Med Chem ; 262: 115922, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37944388

RESUMEN

A family of ten novel ruthenium(II)-cyclopentadienyl organometallics of general formula [Ru(η5-C5H5)(N,N)(PPh2(C6H4COOR)][CF3SO3] (1-10) in which (N,N) = 4,4'-R'-2,2'-bipyridyl (R = -H or -CH2CH2OH; R' = -H, -CH3, -OCH3, -CH2OH, and -CH2-biotin) was prepared from [Ru(η5-C5H5)(PPh2(C6H4COOH))2Cl]. All compounds were fully characterized by means of several spectroscopic and analytical techniques, and the molecular structures of [Ru(η5-C5H5)(PPh2(C6H4COOH))2Cl], 1, 3 and 4 have been additionally studied by single-crystal X-ray diffraction. The anticancer activity of all compounds was evaluated in sensitive and multidrug-resistant counterpart cell lines from human colorectal cancer (Colo 205 and Colo 320) and non-small cell lung cancer NSCLC (A549, NCI-H460 versus NCI-H460/R) as well. Notably, compounds 6 and 7 (R CH2CH2OH and (N,N) = bipy or Me2bipy, respectively) showed antiproliferative effect against both cell lines with high intrinsic selectivity towards cancer cells. The antibacterial activity of all compounds was also evaluated against both Gram negative and Gram positive strains, and some compounds in the series showed potent antibacterial activity against Staphylococcus aureus strains, including the methicillin-resistant MRSA strains. Solution speciation studies revealed that the complexes bearing the PPh2(C6H4COO-) ligand are neutral at physiological pH (7.4) in contrast with their ethylene glycol derivatives that have a permanent positive charge. While all compounds are lipophilic, the difference in the distribution coefficient for neutral and charged complexes is around one order of magnitude. Complexes 6 and 7 exhibited excellent biological activity and were selected for further studies. Spectrofluorometric methods were used to investigate their interaction with biomolecules such as human serum albumin (HSA) and calf thymus DNA (ct-DNA). For these complexes, binding site II of HSA is a possible binding pocket through non-covalent interactions. The release of ethidium from the DNA adduct by the charged complexes proves their interaction with DNA in contrast to the neutral ones. In conclusion, Ru(II)-cyclopentadienyl complexes with 2,2'-bipyridyl-derivatives and an ethylene glycol moiety tethered to the phenylphosphane co-ligand are very promising from a therapeutic perspective, in particular complexes 6 and 7 that display remarkable antibacterial activity with a high anti-proliferative effect against colon and non-small cell lung cancers, both clinically challenging neoplasias in need of effective solutions.


Asunto(s)
Antineoplásicos , Carcinoma de Pulmón de Células no Pequeñas , Complejos de Coordinación , Neoplasias Pulmonares , Rutenio , Humanos , 2,2'-Dipiridil , Ligandos , Albúmina Sérica Humana , ADN/química , Antibacterianos/farmacología , Antibacterianos/química , Glicoles de Etileno , Antineoplásicos/farmacología , Antineoplásicos/química , Rutenio/farmacología , Rutenio/química , Complejos de Coordinación/farmacología , Complejos de Coordinación/química , Línea Celular Tumoral
4.
Molecules ; 28(20)2023 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-37894682

RESUMEN

The spike protein of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) relies on host cell surface glycans to facilitate interaction with the angiotensin-converting enzyme 2 (ACE-2) receptor. This interaction between ACE2 and the spike protein is a gateway for the virus to enter host cells and may be targeted by antiviral drugs to inhibit viral infection. Therefore, targeting the interaction between these two proteins is an interesting strategy to prevent SARS-CoV-2 infection. A library of glycan mimetics and derivatives was selected for a virtual screening performed against both ACE2 and spike proteins. Subsequently, in vitro assays were performed on eleven of the most promising in silico compounds to evaluate: (i) their efficacy in inhibiting cell infection by SARS-CoV-2 (using the Vero CCL-81 cell line as a model), (ii) their impact on ACE2 expression (in the Vero CCL-81 and MDA-MB-231 cell lines), and (iii) their cytotoxicity in a human lung cell line (A549). We identified five synthetic compounds with the potential to block SARS-CoV-2 infection, three of them without relevant toxicity in human lung cells. Xanthene 1 stood out as the most promising anti-SARS-CoV-2 agent, inhibiting viral infection and viral replication in Vero CCL-81 cells, without causing cytotoxicity to human lung cells.


Asunto(s)
Antineoplásicos , COVID-19 , Humanos , SARS-CoV-2 , Enzima Convertidora de Angiotensina 2/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Internalización del Virus , Unión Proteica , Antineoplásicos/farmacología , Antivirales/farmacología
5.
Cytokine Growth Factor Rev ; 73: 150-162, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37225643

RESUMEN

In order to adapt to a higher proliferative rate and an increased demand for energy sources, cancer cells rewire their metabolic pathways, a process currently recognized as a hallmark of cancer. Even though the metabolism of glucose is perhaps the most discussed metabolic shift in cancer, lipid metabolic alterations have been recently recognized as relevant players in the growth and proliferation of cancer cells. Importantly, some of these metabolic alterations are reported to induce a drug resistant phenotype in cancer cells. The acquisition of drug resistance traits severely hinders cancer treatment, being currently considered one of the major challenges of the oncological field. Evidence suggests that Extracellular Vesicles (EVs), which play a crucial role in intercellular communication, may act as facilitators of tumour progression, survival and drug resistance by modulating several aspects involved in the metabolism of cancer cells. This review aims to gather and discuss relevant data regarding metabolic reprograming in cancer, particularly involving the glycolytic and lipid alterations, focusing on its influence on drug resistance and highlighting the relevance of EVs as intercellular mediators of this process.


Asunto(s)
Vesículas Extracelulares , Neoplasias , Humanos , Vesículas Extracelulares/patología , Neoplasias/metabolismo , Comunicación Celular , Resistencia a Antineoplásicos , Lípidos/uso terapéutico
6.
Trends Mol Med ; 29(6): 439-453, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37100646

RESUMEN

Pancreatic stellate cells (PSCs) and cancer-associated fibroblasts (CAFs) are highly abundant cells in the pancreatic tumor microenvironment (TME) that modulate desmoplasia. The formation of a dense stroma leads to immunosuppression and therapy resistance that are major causes of treatment failure in pancreatic ductal adenocarcinoma (PDAC). Recent evidence suggests that several subpopulations of CAFs in the TME can interconvert, explaining the dual roles (antitumorigenic and protumorigenic) of CAFs in PDAC and the contradictory results of CAF-targeted therapies in clinical trials. This highlights the need to clarify CAF heterogeneity and their interactions with PDAC cells. This review focuses on the communication between activated PSCs/CAFs and PDAC cells, as well as on the mechanisms underlying this crosstalk. CAF-focused therapies and emerging biomarkers are also outlined.


Asunto(s)
Fibroblastos Asociados al Cáncer , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/patología , Carcinoma Ductal Pancreático/terapia , Carcinoma Ductal Pancreático/patología , Fibroblastos Asociados al Cáncer/patología , Biomarcadores , Microambiente Tumoral , Neoplasias Pancreáticas
7.
J Chemother ; 35(4): 307-321, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35822500

RESUMEN

Drug resistance is a major setback in cancer treatment, thus models to study its mechanisms are needed. Our work aimed to establish and characterize a resistant cell line from a sensitive acute myeloid leukaemia (AML) cell line - HL60 - by treating the sensitive cells with increasing concentrations of doxorubicin. We confirmed (cell viability assays) that the established subline, HL60-CDR, was resistant to doxorubicin for at least 30 days without drug treatment. The HL60-CDR cells were also resistant to three other drugs (cisplatin, etoposide and daunorubicin), exhibiting a multidrug resistant (MDR) profile. We verified (Western Blotting) that the MDR cells do not express drug efflux pumps, nor present altered expression of apoptotic proteins, when compared with the parental cell line. HL60-CDR cells presented alterations in the cell cycle profile, and in the expression levels of proteins involved in DNA repair mechanisms and drug metabolism, when compared with their drug sensitive counterpart. Proteomic analysis revealed that HL60-CDR cells presented an upregulation of proteins involved in oncogenic pathways, such as TSC2, PDPK1, Annexin A2, among others. Overall, we established an AML MDR subline - HL60-CDR - which presents several resistance mechanisms, providing an in vitro model to test new compounds to circumvent MDR in AML.


Asunto(s)
Resistencia a Múltiples Medicamentos , Leucemia Mieloide Aguda , Humanos , Proteómica , Doxorrubicina/farmacología , Leucemia Mieloide Aguda/tratamiento farmacológico , Células HL-60 , Resistencia a Antineoplásicos , Proteínas Quinasas Dependientes de 3-Fosfoinosítido
8.
Cells ; 11(24)2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36552844

RESUMEN

Cancer is one of the leading causes of death worldwide, thus the search for new cancer therapies is of utmost importance. Ursolic acid is a naturally occurring pentacyclic triterpene with a wide range of pharmacological activities including anti-inflammatory and anti-neoplastic effects. The latter has been assigned to its ability to promote apoptosis and inhibit cancer cell proliferation by poorly defined mechanisms. In this report, we identify lysosomes as the essential targets of the anti-cancer activity of ursolic acid. The treatment of MCF7 breast cancer cells with ursolic acid elevates lysosomal pH, alters the cellular lipid profile, and causes lysosomal membrane permeabilization and leakage of lysosomal enzymes into the cytosol. Lysosomal membrane permeabilization precedes the essential hallmarks of apoptosis placing it as an initial event in the cascade of effects induced by ursolic acid. The disruption of the lysosomal function impairs the autophagic pathway and likely partakes in the mechanism by which ursolic acid kills cancer cells. Furthermore, we find that combining treatment with ursolic acid and cationic amphiphilic drugs can significantly enhance the degree of lysosomal membrane permeabilization and cell death in breast cancer cells.


Asunto(s)
Neoplasias de la Mama , Lisosomas , Humanos , Femenino , Lisosomas/metabolismo , Homeostasis , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Lípidos/farmacología , Ácido Ursólico
9.
Drug Resist Updat ; 62: 100833, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35429792

RESUMEN

Drug resistance remains a major hurdle to successful cancer treatment, being accountable for approximately 90% of cancer-related deaths. In the past years, increasing attention has been given to the role of extracellular vesicles (EVs) in the horizontal transfer of drug resistance in cancer. Indeed, many studies have described the dissemination of therapy resistance traits mediated by EVs, which may be transferred from drug resistant tumor cells to their drug sensitive counterparts. Importantly, different key players of drug resistance have been identified in the cargo of those EVs, such as drug efflux pumps, oncoproteins, antiapoptotic proteins, or microRNAs, among others. Interestingly, the EVs-mediated crosstalk between cells from the tumor microenvironment (TME) and tumor cells has emerged as another important mechanism that leads to cancer cells drug resistance. Recently, the cargo of the TME-derived EVs responsible for the transfer of drug resistance traits has also become a focus of attention. In addition, the possible mechanisms involved in drug sequestration by EVs, likely to contribute to cancer drug resistance, are also described and discussed herein. Despite the latest scientific advances in the field of EVs, this is still a challenging area of research, particularly in the clinical setting. Therefore, further investigation is needed to assess the relevance of EVs to the failure of cancer patients to drug treatment, to identify biomarkers of drug resistance in the EV's cargo, and to develop effective therapeutic strategies to surmount drug resistance. This up-to-date review summarizes relevant literature on the role of EVs in the transfer of drug resistance competences to cancer cells, and the relevance of tumor cells and of TME cells in this process. Finally, this knowledge is integrated with a discussion of possible future clinical applications of EVs as biomarkers of drug resistance.


Asunto(s)
Vesículas Extracelulares , Neoplasias , Biomarcadores/metabolismo , Resistencia a Antineoplásicos , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Microambiente Tumoral
10.
Int J Mol Sci ; 23(7)2022 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-35408988

RESUMEN

Pirfenidone, an antifibrotic drug, has antitumor potential against different types of cancers. Our work explored whether pirfenidone sensitizes non-small cell lung cancer (NSCLC) cell lines to chemotherapeutic treatments. The cytotoxic effect of paclitaxel in combination with pirfenidone against three NSCLC cell lines (A549, NCI-H322 and NCI-H460) was evaluated using the sulforhodamine B assay. The effects of this combination on cell viability (trypan blue exclusion assay), proliferation (BrdU incorporation assay), cell cycle (flow cytometry following PI staining) and cell death (Annexin V-FITC detection assay and Western blot) were analyzed on the most sensitive cell line (NCI-H460). The cytotoxic effect of this drug combination was also evaluated against two non-tumorigenic cell lines (MCF-10A and MCF-12A). Finally, the ability of pirfenidone to sensitize NCI-H460 cells to a combination of paclitaxel plus carboplatin was assessed. The results demonstrated that pirfenidone sensitized NCI-H460 cells to paclitaxel treatment, reducing cell growth, viability and proliferation, inducing alterations in the cell cycle profile and causing an increase in the % of cell death. Remarkably, this combination did not increase cytotoxicity in non-tumorigenic cells. Importantly, pirfenidone also sensitized NCI-H460 cells to paclitaxel plus carboplatin. This work highlights the possibility of repurposing pirfenidone in combination with chemotherapy for the treatment of NSCLC.


Asunto(s)
Antineoplásicos , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Antineoplásicos/farmacología , Apoptosis , Carboplatino/farmacología , Carboplatino/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Proliferación Celular , Humanos , Neoplasias Pulmonares/metabolismo , Paclitaxel , Piridonas
11.
Drug Resist Updat ; 59: 100797, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34955385

RESUMEN

Despite an increasing arsenal of anticancer therapies, many patients continue to have poor outcomes due to the therapeutic failures and tumor relapses. Indeed, the clinical efficacy of anticancer therapies is markedly limited by intrinsic and/or acquired resistance mechanisms that can occur in any tumor type and with any treatment. Thus, there is an urgent clinical need to implement fundamental changes in the tumor treatment paradigm by the development of new experimental strategies that can help to predict the occurrence of clinical drug resistance and to identify alternative therapeutic options. Apart from mutation-driven resistance mechanisms, tumor microenvironment (TME) conditions generate an intratumoral phenotypic heterogeneity that supports disease progression and dismal outcomes. Tumor cell metabolism is a prototypical example of dynamic, heterogeneous, and adaptive phenotypic trait, resulting from the combination of intrinsic [(epi)genetic changes, tissue of origin and differentiation dependency] and extrinsic (oxygen and nutrient availability, metabolic interactions within the TME) factors, enabling cancer cells to survive, metastasize and develop resistance to anticancer therapies. In this review, we summarize the current knowledge regarding metabolism-based mechanisms conferring adaptive resistance to chemo-, radio-and immunotherapies as well as targeted therapies. Furthermore, we report the role of TME-mediated intratumoral metabolic heterogeneity in therapy resistance and how adaptations in amino acid, glucose, and lipid metabolism support the growth of therapy-resistant cancers and/or cellular subpopulations. We also report the intricate interplay between tumor signaling and metabolic pathways in cancer cells and discuss how manipulating key metabolic enzymes and/or providing dietary changes may help to eradicate relapse-sustaining cancer cells. Finally, in the current era of personalized medicine, we describe the strategies that may be applied to implement metabolic profiling for tumor imaging, biomarker identification, selection of tailored treatments and monitoring therapy response during the clinical management of cancer patients.


Asunto(s)
Neoplasias , Microambiente Tumoral , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Humanos , Inmunoterapia/métodos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Medicina de Precisión
12.
Cells ; 10(11)2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34831110

RESUMEN

Cancer multidrug resistance (MDR) is one of the main challenges for cancer treatment efficacy. MDR is a phenomenon by which tumor cells become resistant to several unrelated drugs. Some studies have previously described the important role of extracellular vesicles (EVs) in the dissemination of a MDR phenotype. EVs' cargo may include different players of MDR, such as microRNAS and drug-efflux pumps, which may be transferred from donor MDR cells to recipient drug-sensitive counterparts. The present work aimed to: (i) compare the ability of drug-sensitive and their MDR counterpart cells to release and capture EVs and (ii) study and relate those differences with possible distinct fate of the endocytic pathway in these counterpart cells. Our results showed that MDR cells released more EVs than their drug-sensitive counterparts and also that the drug-sensitive cells captured more EVs than their MDR counterparts. This difference in the release and capture of EVs may be associated with differences in the endocytic pathway between drug-sensitive and MDR cells. Importantly, manipulation of the recycling pathway influenced the response of drug-sensitive cells to doxorubicin treatment.


Asunto(s)
Resistencia a Múltiples Medicamentos , Vesículas Extracelulares/metabolismo , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Clorobenzoatos/farmacología , Cinamatos/farmacología , Doxorrubicina/farmacología , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Endocitosis/efectos de los fármacos , Vesículas Extracelulares/efectos de los fármacos , Humanos , Proteínas de la Membrana/metabolismo , ortoaminobenzoatos/farmacología
13.
Pharmaceuticals (Basel) ; 14(3)2021 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-33804613

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is considered one of the deadliest tumors worldwide. The diagnosis is often possible only in the latter stages of the disease, with patients already presenting an advanced or metastatic tumor. It is also one of the cancers with poorest prognosis, presenting a five-year survival rate of around 5%. Treatment of PDAC is still a major challenge, with cytotoxic chemotherapy remaining the basis of systemic therapy. However, no major advances have been made recently, and therapeutic options are limited and highly toxic. Thus, novel therapeutic options are urgently needed. Drug repurposing is a strategy for the development of novel treatments using approved or investigational drugs outside the scope of the original clinical indication. Since repurposed drugs have already completed several stages of the drug development process, a broad range of data is already available. Thus, when compared with de novo drug development, drug repurposing is time-efficient, inexpensive and has less risk of failure in future clinical trials. Several repurposing candidates have been investigated in the past years for the treatment of PDAC, as single agents or in combination with conventional chemotherapy. This review gives an overview of the main drugs that have been investigated as repurposing candidates, for the potential treatment of PDAC, in preclinical studies and clinical trials.

14.
Molecules ; 26(6)2021 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-33805741

RESUMEN

A series of novel functionalized methyl 3-(hetero)arylthieno[3,2-b]pyridine-2-carboxylates 2a-2h were synthesized by C-C Pd-catalyzed Suzuki-Miyaura cross-coupling of methyl 3-bromothieno[3,2-b]pyridine-2-carboxylate with (hetero)aryl pinacol boranes, trifluoro potassium boronate salts or boronic acids. Their antitumoral potential was evaluated in two triple negative breast cancer (TNBC) cell lines-MDA-MB-231 and MDA-MB-468, by sulforhodamine B assay. Their effects on the non-tumorigenic MCF-12A cells were also evaluated. The results demonstrated that three compounds caused growth inhibition in both TNBC cell lines, with little or no effect against the non-tumorigenic cells. The most promising compound was further studied concerning possible effects on cell viability (by trypan blue exclusion assay), cell proliferation (by bromodeoxyuridine assay) and cell cycle profile (by flow cytometry). The results demonstrated that the GI50 concentration of compound 2e (13 µM) caused a decreased in MDA-MB-231 cell number, which was correlated with a decreased in the % of proliferating cells. Moreover, this compound increased G0/G1 phase and decreased S phases, when compared to control cells (although was not statistic significant). Interestingly, compound 2e also reduced tumor size using an in ovo CAM (chick chorioallantoic membrane) model. This work highlights the potential antitumor effect of a novel methyl 3-arylthieno[3,2-b]pyridine-2-carboxylate derivative.


Asunto(s)
Antineoplásicos/síntesis química , Antineoplásicos/farmacología , Tienopiridinas/síntesis química , Tienopiridinas/farmacología , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Animales , Antineoplásicos/química , Ciclo Celular/efectos de los fármacos , Línea Celular , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Membrana Corioalantoides/cirugía , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Humanos , Glándulas Mamarias Humanas/efectos de los fármacos , Glándulas Mamarias Humanas/patología , Estructura Molecular , Trasplante de Neoplasias , Relación Estructura-Actividad , Tienopiridinas/química , Neoplasias de la Mama Triple Negativas/patología
15.
Cancer Lett ; 501: 210-223, 2021 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-33212158

RESUMEN

Tumour-associated macrophages have been implicated in pancreatic ductal adenocarcinoma (PDAC) therapy response and Extracellular vesicles (EVs) shed by macrophages might have a role in this process. Here, we demonstrated that large EVs released by anti-inflammatory human macrophages decreased PDAC cellular sensitivity to gemcitabine. Using proteomic analysis, chitinase 3-like-1 (CHI3L1) and fibronectin (FN1) were identified as two of the most abundant proteins in the cargo of macrophages-derived EVs. Overexpression of CHI3L1 and FN1, using recombinant human proteins, induced PDAC cellular resistance to gemcitabine through ERK (extracellular-signal-regulated kinase) activation. Inhibition of CHI3L1 and FN1 by pentoxifylline and pirfenidone, respectively, partially reverted gemcitabine resistance. In PDAC patient samples, CHI3L1 and FN1 were expressed in the stroma, associated with the high presence of macrophages. The Cancer Genome Atlas analysis revealed an association between CHI3L1 and FN1 gene expression, overall survival of PDAC patients, gemcitabine response, and macrophage infiltration. Altogether, our data identifies CHI3L1 and FN1 as potential targets for pharmacological inhibition in PDAC. Further pre-clinical in vivo work is warranted to study the possibility of repurposing pentoxifylline and pirfenidone as adjuvant therapies for PDAC treatment.


Asunto(s)
Carcinoma Ductal Pancreático/mortalidad , Proteína 1 Similar a Quitinasa-3/metabolismo , Desoxicitidina/análogos & derivados , Resistencia a Antineoplásicos , Vesículas Extracelulares/metabolismo , Fibronectinas/metabolismo , Macrófagos/metabolismo , Neoplasias Pancreáticas/mortalidad , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Proteína 1 Similar a Quitinasa-3/genética , Desoxicitidina/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Vesículas Extracelulares/genética , Fibronectinas/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Pentoxifilina/farmacología , Proteómica , Piridonas/farmacología , Análisis de Supervivencia , Regulación hacia Arriba/efectos de los fármacos , Gemcitabina , Neoplasias Pancreáticas
16.
Cancers (Basel) ; 14(1)2021 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-35008353

RESUMEN

Today, innovative three-dimensional (3D) cell culture models have been proposed as viable and biomimetic alternatives for initial drug screening, allowing the improvement of the efficiency of drug development. These models are gaining popularity, given their ability to reproduce key aspects of the tumor microenvironment, concerning the 3D tumor architecture as well as the interactions of tumor cells with the extracellular matrix and surrounding non-tumor cells. The development of accurate 3D models may become beneficial to decrease the use of laboratory animals in scientific research, in accordance with the European Union's regulation on the 3R rule (Replacement, Reduction, Refinement). This review focuses on the impact of 3D cell culture models on cancer research, discussing their advantages, limitations, and compatibility with high-throughput screenings and automated systems. An insight is also given on the adequacy of the available readouts for the interpretation of the data obtained from the 3D cell culture models. Importantly, we also emphasize the need for the incorporation of additional and complementary microenvironment elements on the design of 3D cell culture models, towards improved predictive value of drug efficacy.

17.
Cells ; 9(5)2020 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-32384712

RESUMEN

Extracellular vesicles (EVs) mediate intercellular signaling and communication, allowing the intercellular exchange of proteins, lipids, and genetic material. Their recognized role in the maintenance of the physiological balance and homeostasis seems to be severely disturbed throughout the carcinogenesis process. Indeed, the modus operandi of cancer implies the highjack of the EV signaling network to support tumor progression in many (if not all) human tumor malignancies. We have reviewed the current evidence for the role of EVs in affecting cancer hallmark traits by: (i) promoting cell proliferation and escape from apoptosis, (ii) sustaining angiogenesis, (iii) contributing to cancer cell invasion and metastasis, (iv) reprogramming energy metabolism, (v) transferring mutations, and (vi) modulating the tumor microenvironment (TME) by evading immune response and promoting inflammation. Special emphasis was given to the role of EVs in the transfer of drug resistant traits and to the EV cargo responsible for this transfer, both between cancer cells or between the microenvironment and tumor cells. Finally, we reviewed evidence for the increased release of EVs by drug resistant cells. A timely and comprehensive understanding of how tumor EVs facilitate tumor initiation, progression, metastasis and drug resistance is instrumental for the development of innovative EV-based therapeutic approaches for cancer.


Asunto(s)
Resistencia a Antineoplásicos , Vesículas Extracelulares/metabolismo , Neoplasias/metabolismo , Animales , Apoptosis , Humanos , Evasión Inmune , Modelos Biológicos , Neoplasias/inmunología
18.
Blood Adv ; 4(7): 1478-1491, 2020 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-32282883

RESUMEN

Internal tandem duplication of FLT3 (FLT3-ITD) is one of the most common somatic mutations in acute myeloid leukemia (AML); it causes constitutive activation of FLT3 kinase and is associated with high relapse rates and poor survival. Small-molecule inhibition of FLT3 represents an attractive therapeutic strategy for this subtype of AML, although resistance from secondary FLT3 tyrosine kinase domain (FLT3-TKD) mutations is an emerging clinical problem. CCT241736 is an orally bioavailable, selective, and potent dual inhibitor of FLT3 and Aurora kinases. FLT3-ITD+ cells with secondary FLT3-TKD mutations have high in vitro relative resistance to the FLT3 inhibitors quizartinib and sorafenib, but not to CCT241736. The mechanism of action of CCT241736 results in significant in vivo efficacy, with inhibition of tumor growth observed in efficacy studies in FLT3-ITD and FLT3-ITD-TKD human tumor xenograft models. The efficacy of CCT241736 was also confirmed in primary samples from AML patients, including those with quizartinib-resistant disease, which induces apoptosis through inhibition of both FLT3 and Aurora kinases. The unique combination of CCT241736 properties based on robust potency, dual selectivity, and significant in vivo activity indicate that CCT241736 is a bona fide clinical drug candidate for FLT3-ITD and TKD AML patients with resistance to current drugs.


Asunto(s)
Leucemia Mieloide Aguda , Compuestos de Fenilurea , Aurora Quinasas , Benzotiazoles , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Compuestos de Fenilurea/farmacología , Compuestos de Fenilurea/uso terapéutico , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Tirosina Quinasa 3 Similar a fms/genética
19.
RSC Med Chem ; 11(2): 268-273, 2020 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33479633

RESUMEN

Gemcitabine (dFdC) is a nucleoside analogue used in the treatment of various cancers, being a standard treatment for advanced pancreatic cancer. The effect of gemcitabine is severely compromised due to its rapid plasma degradation, systemic toxicity and drug resistance, which restricts its therapeutic efficacy. Our main goal was to develop new active conjugates of dFdC with novel cell-penetrating hexapeptides (CPP6) to facilitate intracellular delivery of this drug. All new peptides were prepared by solid phase peptide synthesis (SPPS), purified and characterized by HPLC and LC-MS. Cell-penetrating peptides (CPP) contain a considerably high ratio of positively charged amino acids, imparting them with cationic character. Tumor cells are characterized by an increased anionic nature of their membrane surface, a property that could be used by CPP to target these cells. The BxPC-3, MCF-7 and PC-3 cancer cell lines were used to evaluate the in vitro cytotoxicity of conjugates and the results showed that conjugating dFdC with CPP6 significantly enhanced cell growth inhibitory activity on PC-3 cells, with IC50 between 14 and 15 nM. These new conjugates have potential to become new therapeutic tools for cancer therapy.

20.
Drug Resist Updat ; 47: 100647, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31704541

RESUMEN

Cancer-derived extracellular vesicles (EVs) have been detected in the bloodstream and other biofluids of cancer patients. They carry various tumor-derived molecules such as mutated DNA and RNA fragments, oncoproteins as well as miRNA and protein signatures associated with various phenotypes. The molecular cargo of EVs partially reflects the intracellular status of their cellular origin, however various sorting mechanisms lead to the enrichment or depletion of EVs in specific nucleic acids, proteins or lipids. It is becoming increasingly clear that cancer-derived EVs act in a paracrine and systemic manner to promote cancer progression by transferring aggressive phenotypic traits and drug-resistant phenotypes to other cancer cells, modulating the anti-tumor immune response, as well as contributing to remodeling the tumor microenvironment and formation of pre-metastatic niches. These findings have raised the idea that cancer-derived EVs may serve as analytes in liquid biopsies for real-time monitoring of tumor burden and drug resistance. In this review, we have summarized recent longitudinal clinical studies describing promising EV-associated biomarkers for cancer progression and tracking cancer evolution as well as pre-clinical and clinical evidence on the relevance of EVs for monitoring the emergence or progression of drug resistance. Furthermore, we outlined the state-of-the-art in the development and commercialization of EV-based biomarkers and discussed the scientific and technological challenges that need to be met in order to translate EV research into clinically applicable tools for precision medicine.


Asunto(s)
Biomarcadores de Tumor/análisis , Resistencia a Antineoplásicos , Vesículas Extracelulares/química , Biopsia Líquida/métodos , Neoplasias/diagnóstico , Progresión de la Enfermedad , Humanos , Neoplasias/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA