Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(15)2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39126055

RESUMEN

Rasmussen's encephalitis (RE) stands as a rare neurological disorder marked by progressive cerebral hemiatrophy and epilepsy resistant to medical treatment. Despite extensive study, the primary cause of RE remains elusive, while its histopathological features encompass cortical inflammation, neuronal degeneration, and gliosis. The underlying molecular mechanisms driving disease progression remain largely unexplored. In this case study, we present a patient with RE who underwent hemispherotomy and has remained seizure-free for over six months, experiencing gradual motor improvement. Furthermore, we conducted molecular analysis on the excised brain tissue, unveiling a decrease in the expression of cell-cycle-associated genes coupled with elevated levels of BDNF and TNF-α proteins. These findings suggest the potential involvement of cell cycle regulators in the progression of RE.


Asunto(s)
Encefalitis , Humanos , Encefalitis/genética , Encefalitis/patología , Encefalitis/metabolismo , Masculino , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Encéfalo/patología , Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Corteza Cerebral/patología , Corteza Cerebral/metabolismo , Femenino , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/genética , Ciclo Celular/genética
2.
Curr Issues Mol Biol ; 46(8): 8111-8117, 2024 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-39194697

RESUMEN

Regardless of the containment of the SARS-CoV-2 pandemic, it remains paramount to comprehensively understand its underlying mechanisms to mitigate potential future health and economic impacts, comparable to those experienced throughout the course of the pandemic. The angiotensin-converting enzyme 2 (ACE2) provides anchorage for SARS-CoV-2 binding, thus implicating that ACE and ACE2 might contribute to the variability in infection severity. This study aimed to elucidate predisposing factors influencing the disease course among people infected by SARS-CoV-2, focusing on angiotensin-converting enzyme (ACE) and ACE2 polymorphisms. Notably, despite similar demographics and comorbidities, COVID-19 patients exhibit substantial differences in prognosis. Genetic polymorphisms in ACE and ACE2 have been implicated in disease progression, prompting our investigation into their role in COVID-19 evolution. Using next-generation sequencing (NGS), we analyzed ACE and ACE2 genes in a sample group comprising six subjects infected by SARS-CoV-2. Our findings revealed a correlation between specific polymorphisms and COVID-19 outcomes. Specifically, ACE and ACE2 intronic deletions were observed in all deceased patients, suggesting a potential association with mortality. These results highlight the significance of genetic factors in shaping the clinical course of COVID-19, emphasizing the importance of further research into the impact of genetic variations on COVID-19 severity.

3.
Int J Mol Sci ; 25(13)2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-39000479

RESUMEN

It has been widely established that the characterization of extracellular vesicles (EVs), particularly small EVs (sEVs), shed by different cell types into biofluids, helps to identify biomarkers and therapeutic targets in neurological and neurodegenerative diseases. Recent studies are also exploring the efficacy of mesenchymal stem cell-derived extracellular vesicles naturally enriched with therapeutic microRNAs and proteins for treating various diseases. In addition, EVs released by various neural cells play a crucial function in the modulation of signal transmission in the brain in physiological conditions. However, in pathological conditions, such EVs can facilitate the spread of pathological proteins from one brain region to the other. On the other hand, the analysis of EVs in biofluids can identify sensitive biomarkers for diagnosis, prognosis, and disease progression. This review discusses the potential therapeutic use of stem cell-derived EVs in several central nervous system diseases. It lists their differences and similarities and confers various studies exploring EVs as biomarkers. Further advances in EV research in the coming years will likely lead to the routine use of EVs in therapeutic settings.


Asunto(s)
Biomarcadores , Enfermedades del Sistema Nervioso Central , Vesículas Extracelulares , Humanos , Vesículas Extracelulares/metabolismo , Enfermedades del Sistema Nervioso Central/metabolismo , Enfermedades del Sistema Nervioso Central/terapia , Enfermedades del Sistema Nervioso Central/diagnóstico , Animales , MicroARNs/genética , MicroARNs/metabolismo , Células Madre Mesenquimatosas/metabolismo , Enfermedades Neurodegenerativas/terapia , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/diagnóstico
4.
Biology (Basel) ; 13(5)2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38785785

RESUMEN

Stress is an important risk factor for the onset of anxiety and depression. The ability to cope with stressful events varies among different subjects, probably depending on different genetic variants, sex and previous life experiences. The Val66Met variant of Brain-Derived Neurotrophic Factor (BDNF), which impairs the activity-dependent secretion of BDNF, has been associated with increased susceptibility to the development of various neuropsychiatric disorders. Adult male and female wild-type Val/Val (BDNFV/V) and heterozygous Val/Met (BDNFV/M) mice were exposed to two sessions of forced swimming stress (FSS) per day for two consecutive days. The mice were behaviorally tested 1 day (short-term effect) or 11 days (long-term effect) after the last stress session. Protein and mRNA levels were measured in the hippocampus 16 days after the end of stress exposure. Stressed mice showed a higher anxiety-like phenotype compared to non-stressed mice, regardless of the sex and genotype, when analyzed following the short period of stress. In the prolonged period, anxiety-like behavior persisted only in male BDNFV/M mice (p < 0.0001). Interestingly, recovery in male BDNFV/V mice was accompanied by an increase in pCREB (p < 0.001) and Bdnf4 (p < 0.01) transcript and a decrease in HDAC1 (p < 0.05) and Dnmt3a (p = 0.01) in the hippocampus. Overall, our results show that male and female BDNF Val66Met knock-in mice can recover from subchronic stress in different ways.

5.
Cells ; 13(9)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38727281

RESUMEN

This review delves into the groundbreaking impact of induced pluripotent stem cells (iPSCs) and three-dimensional organoid models in propelling forward neuropathology research. With a focus on neurodegenerative diseases, neuromotor disorders, and related conditions, iPSCs provide a platform for personalized disease modeling, holding significant potential for regenerative therapy and drug discovery. The adaptability of iPSCs, along with associated methodologies, enables the generation of various types of neural cell differentiations and their integration into three-dimensional organoid models, effectively replicating complex tissue structures in vitro. Key advancements in organoid and iPSC generation protocols, alongside the careful selection of donor cell types, are emphasized as critical steps in harnessing these technologies to mitigate tumorigenic risks and other hurdles. Encouragingly, iPSCs show promising outcomes in regenerative therapies, as evidenced by their successful application in animal models.


Asunto(s)
Células Madre Pluripotentes Inducidas , Organoides , Organoides/patología , Humanos , Células Madre Pluripotentes Inducidas/citología , Animales , Neuropatología/métodos , Medicina Regenerativa/métodos , Enfermedades Neurodegenerativas/terapia , Enfermedades Neurodegenerativas/patología , Diferenciación Celular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...