RESUMEN
Canis lupus familiaris (domestic dog) represents a reliable sentinel for the occurrence of a well-established transmission cycle of Trypanosoma cruzi among wild mammals in the surroundings and, consequently, where the risk of human infection exists. Serological diagnosis is the chosen method to identify T. cruzi infection in dogs that, in Brazil, rarely present positive parasitological tests. The use of recombinant chimeric parasitic antigens results in a sensitive and specific serological diagnostic test in contrast to the use of crude T. cruzi antigens. Our objective was to evaluate the Chagas/Bio-Manguinhos Lateral Flow Immunochromatographic Rapid Test (Chagas-LFRT) for the diagnosis of T. cruzi infection in domestic dogs and the potential of application of this diagnostic platform to wild canid species. Two recombinant proteins (IBMP-8.1 and IBMP-8.4) that displayed the best performance in the enzyme immunoassay (ELISA) in previous studies were tested in a platform with two diagnostic bands. A panel of 281 dog serum samples was evaluated: 133 positive for T. cruzi by serological diagnosis, including 20 samples with positive blood cultures belonging to different discrete typing units (DTUs); 129 negative samples; and 19 samples from dogs infected by other trypanosomatids: Leishmania infantum, Trypanosoma rangeli, Trypanosoma caninum and Crithidia mellificae, in addition to samples infected by Anaplasma platys, Dirofilaria immitis and Erlichia sp. that were employed to evaluate eventual cross-reactions. We also evaluated the Chagas-LFRT to detect T. cruzi infection in 9 serum samples from six wild canid species. We observed that the intensity pattern of the bands was directly proportional to the serological titer observed in IFAT. The sensitivity was 94%, the specificity was 91% according to the ROC curve, and the defined cutoff was an optical density of 4.8. The agreement obtained was considered substantial by the kappa analysis (84%). From T. cruzi positive hemoculture samples, 88.9% were positive by Chagas-LFRT. The test was efficient in recognizing infections by five of the six T. cruzi DTUs. Cross-reactions were not observed in infections by L. infantum, T. rangeli, T. caninum and D. immitis; however, they were observed in sera of dogs infected by Crithidia mellificae, Anaplasma sp. and Erlichia sp. A strong reaction was observed when serum samples from wild canids were submitted to the Protein A affinity test, confirming its applicability for these species. This test will allow rapid preventive actions in areas with high risk to the emergence of Chagas disease in a safer, reliable, low-cost and immediate manner, without the need for more complex laboratory tests.
Asunto(s)
Enfermedad de Chagas , Leishmania infantum , Trypanosoma cruzi , Animales , Enfermedad de Chagas/diagnóstico , Enfermedad de Chagas/epidemiología , Enfermedad de Chagas/veterinaria , Perros , Ensayo de Inmunoadsorción Enzimática , Mamíferos , Pruebas SerológicasRESUMEN
BACKGROUND: There are more than 300 species of capillariids that parasitize various vertebrate groups worldwide. Species identification is hindered because of the few taxonomically informative structures available, making the task laborious and genus definition controversial. Thus, its taxonomy is one of the most complex among Nematoda. Eggs are the parasitic structures most viewed in coprological analysis in both modern and ancient samples; consequently, their presence is indicative of positive diagnosis for infection. The structure of the egg could play a role in genera or species discrimination. Institutional biological collections are taxonomic repositories of specimens described and strictly identified by systematics specialists. METHODS: The present work aims to characterize eggs of capillariid species deposited in institutional helminth collections and to process the morphological, morphometric and ecological data using machine learning (ML) as a new approach for taxonomic identification. Specimens of 28 species and 8 genera deposited at Coleção Helmintológica do Instituto Oswaldo Cruz (CHIOC, IOC/FIOCRUZ/Brazil) and Collection de Nématodes Zooparasites du Muséum National d'Histoire Naturelle de Paris (MNHN/France) were examined under light microscopy. In the morphological and morphometric analyses (MM), the total length and width of eggs as well as plugs and shell thickness were considered. In addition, eggshell ornamentations and ecological parameters of the geographical location (GL) and host (H) were included. RESULTS: The performance of the logistic model tree (LMT) algorithm showed the highest values in all metrics compared with the other algorithms. Algorithm J48 produced the most reliable decision tree for species identification alongside REPTree. The Majority Voting algorithm showed high metric values, but the combined classifiers did not attenuate the errors revealed in each algorithm alone. The statistical evaluation of the dataset indicated a significant difference between trees, with GL + H + MM and MM only with the best scores. CONCLUSIONS: The present research proposed a novel procedure for taxonomic species identification, integrating data from centenary biological collections and the logic of artificial intelligence techniques. This study will support future research on taxonomic identification and diagnosis of both modern and archaeological capillariids.
Asunto(s)
Clasificación , Colecciones como Asunto , Nematodos/clasificación , Animales , Helmintos/clasificación , Aprendizaje Automático/tendenciasRESUMEN
Trypanosoma cruzi and Leishmania spp. are parasites that infect multiple hosts including canids, considered bioaccumulators of parasites. Deforestation in the Cerrado biome has resulted in the exposure of wild canids to anthropized areas, where they may establish ecological and epidemiological relationships with domestic dogs. We evaluated the infection by trypanosomatids in canids from a Cerrado agroecosystem between 2013 and 2017. Samples of wild canids (blood, bone marrow and skin) and dogs (blood) were collected for parasitological, serological and molecular diagnosis. A total of 414 samples from wild (n = 131) and domestic (n = 283) canids were collected, including recaptures. We obtained five positive hemocultures from Lycalopex vetulus (n = 2), Cerdocyon thous (n = 1) and dogs (n = 2), all characterized as T. cruzi TcIII/V (18S rDNA) and TcIII/V/VI (gGAPDH); one positive skin fragment for Leishmania sp. (C. thous), one positive skin culture (Chrysocyon brachyurus) and one positive fresh blood examination from a dog. Infection by T. cruzi and Leishmania spp. was serologically confirmed in 18% and 4% of the canids, respectively. Active transmission was attested by seroconversion events and occurred despite the low rate of positive parasitological assays. Wild and domestic canids infected by both parasites were detected sharing the same areas, pointing to a possible spillover of parasites among them.
RESUMEN
In Colombia, dogs and opossum are the most important mammals in domestic and sylvatic T. cruzi transmission. However, the role of both species has not been evaluated in areas where both species converge in the peridomestic area. To evaluate the infection status of domestic and wild mammals in peridomestic habitats of Puerto Valdivia, Antioquia Department. The infection of domestic dogs and small wild mammals was performed by hemoculture, molecular and serological methods. Additionally, the infection in children under 15 years old and triatomine searches was carried out. We found that 16.07% and 34% dogs, and 59.1% and 61.1% Didelphis marsupialis were found positive by molecular and serological methods respectively. Moreover, in 25% and 75% of the infected dogs were detected TcIDom and TcI sylvatic, respectively, while all the D. marsupialis were infected with TcI. Six Rattus rattus and three Proechimys semispinosus were captured but without T. cruzi infection. Finally, none of the 82 children were positive and no triatomine bugs were captured. D. marsupialis and domestics dogs have an important role in the transmission of T. cruzi suggesting a potential risk in T. cruzi transitions areas.
RESUMEN
Trypanosoma cruzi is a widespread protozoan in Latin America causing Chagas disease in humans and able to infect several other mammal species. The objective of this study was to investigate the T. cruzi infection in triatomine fauna as well as in dogs from distinct areas of Acre, western Brazilian Amazonia, which recently reported acute cases of human CD as well as an area that have not notify this disease recently. Triatomines were collected and the intestinal contents were evaluated for the presence of trypanosomatids by optical microscopy and polymerase chain reaction (PCR) targeting the mini-exon gene. Blood smear, hemoculture, PCR and serology were performed in the studied mammals. Fecal content of four triatomines were positive (11.6%) in the fresh examination. Molecular analysis identified Trypanosoma cruzi TCI in two specimens. Blood samples from 90 dogs were obtained. Trypanosoma sp. was observed in six blood smears (6/83, 7.22%). Seropositivity for T. cruzi was 8/89 (8.98). One dog's hemoculture was obtained and characterized as T. rangeli. PCR reactions in blood clots resulted in one positive dog (1/75, 1.3%) infected by T. janseni, providing a new mammalian host for a recently described Trypanosoma species. The results demonstrate the low exposition and prevalence for T. cruzi suggesting that dogs are not important to T. cruzi transmission cycle in the studied áreas.
Asunto(s)
Mascotas/parasitología , Trypanosoma cruzi/aislamiento & purificación , Animales , Brasil/epidemiología , Perros , Humanos , Reacción en Cadena de la Polimerasa , Trypanosoma cruzi/genéticaRESUMEN
[This corrects the article DOI: 10.1371/journal.pone.0227828.].
RESUMEN
Trypanosoma cruzi, the protozoan agent of Chagas disease in the Americas, is comprised of six genetic lineages (TcI-TcVI) and a possible seventh (TcBat, related to TcI). Identification of T. cruzi lineages infecting reservoir mammalian species is fundamental to resolving transmission cycles. However, this is hindered by the limited sensitivity and technical complexity of parasite isolation and genotyping. An alternative approach is serology using T. cruzi lineage-specific epitopes, such as those of the trypomastigote small surface antigen (TSSA). For surveillance of T. cruzi lineage infections in mammal species from diverse Brazilian regions, we apply a novel rapid diagnostic test (RDT, Chagas Sero K-SeT), which incorporates the TSSA peptide epitope specific to TcII/V/VI (TSSApep-II/V/VI) and Protein G detection of antibodies. Chagas Sero K-SeT RDT results with sera from experimentally infected mice, from tamarin primates (Leontopithecus spp.) and from canines (Canis familiaris) were concordant with corresponding TSSApep-II/V/VI ELISAs. The Chagas Sero K-Set detected TcII/V/VI infections in Leontopithecus spp. from the Atlantic forest (n = 46), in C. familiaris (n = 16) and Thrichomys laurentius (n = 2) from Caatinga biome and Chiroptera (n = 1) from Acre, Amazonia. The Chagas Sero K-SeT RDT is directly applicable to TcII/V/VI-specific serological surveillance of T. cruzi infection in several different mammalian Orders. It can replace ELISAs and provides efficient, point-of-sampling, low-cost detection of TcII/V/VI infections, with at least equivalent sensitivity, although some mammals may be difficult to trap, and, not unexpectedly, Chagas Sero K-SeT could not recognise feline IgG. Knowledge of sylvatic hosts of T. cruzi can be expanded, new reservoir species discovered, and the ecology of transmission cycles clarified, particularly with adaptation to further mammalian Orders.
Asunto(s)
Enfermedad de Chagas/veterinaria , Trypanosoma cruzi/aislamiento & purificación , Animales , Antígenos de Protozoos/sangre , Antígenos de Protozoos/inmunología , Brasil/epidemiología , Gatos , Enfermedad de Chagas/sangre , Enfermedad de Chagas/diagnóstico , Pruebas Diagnósticas de Rutina , Perros , Ensayo de Inmunoadsorción Enzimática , Humanos , Ratones , Trypanosoma cruzi/inmunologíaRESUMEN
We surveyed infection by Trypanosoma spp. and Leishmania spp. in small wild mammals from Cumari, Goiás State aiming to investigate the diversity of trypanosomatid in a modified landscape of the Brazilian Cerrado (and possible infection overlapping with canids from the same area). Blood, skin, spleen, and liver samples were collected for parasitological, serological, and molecular assays. Gracilinanus agilis was the most abundant species (N = 70; 48.6%) and it was the only one with patent parasitemia. Characterization by mini-exon and 18SrDNA targets were achieved in 7/10 hemocultures with positive fresh blood examination, which confirmed the T. cruzi infection by Discrete Typing Units (DTU) TcI in single (N = 2) and mixed infections with other DTUs (N = 5). T. rangeli and T. dionisii were detected in skin fragments from Didelphis albiventris and Oecomys cleberi, respectively. G. agilis were found to be infected by L. braziliensis and L. guyanensis, while Leishmania sp. DNA was detected in the liver of Oligoryzomys nigripes and Calomys expulsus. Subpatent infection by T. cruzi and Leishmania sp. was serologically detected in 15% and 9% of the small mammal fauna, respectively. Small mammals from Cumari are included in T. cruzi and Leshmania spp. transmission cycles, showing a higher diversity of trypanosomatid species and/or genotypes than that observed in canids of the same agroecosystem.
RESUMEN
BACKGROUND: Dogs are considered sentinels in areas of Trypanosoma cruzi transmission risk to humans. ELISA is generally the method of choice for diagnosing T. cruzi exposure in dogs, but its performance substantially depends on the antigenic matrix employed. In previous studies, our group has developed four chimeric antigens (IBMP-8.1, 8.2, 8.3, and 8.4) and evaluated their potential for diagnosing T. cruzi exposure in humans. For human sera, these chimeric antigens presented superior diagnostic performances as compared to commercial tests available in Brazil, Spain, and Argentina. Therefore, in this study we have evaluated the potential of these antigenic proteins for detection of anti-T. cruzi IgG antibodies in dog sera. METHODOLOGY/PRINCIPAL FINDINGS: The IBMP-ELISA assays were optimized by checkerboard titration. Subsequently, the diagnostic potential was validated through analysis of ROC curves and the performance of the tests was determined using double entry tables. Cross-reactivity was also evaluated for babesiosis, ehrlichiosis, dirofilariosis, anaplasmosis, and visceral leishmaniasis. Best performance was shown by IBMP-8.3 and IBMP-8.4, although all four antigens demonstrated a high diagnostic performance with 46 positive and 149 negative samples tested. IBMP-8.3 demonstrated 100% sensitivity, followed by IBMP-8.4 (96.7-100%), IBMP-8.2 (73.3-87.5%), and IBMP-8.1 (50-100%). The highest specificities were achieved with IBMP-8.2 (100%) and IBMP-8.4 (100%), followed by IBMP-8.3 (96.7-97.5%) and IBMP 8.1 (89.1-100%). CONCLUSIONS/SIGNIFICANCE: The use of chimeric antigenic matrices in immunoassays for anti-T. cruzi IgG antibody detection in sera of infected dogs was shown to be a promising tool for veterinary diagnosis and epidemiological studies. The chimeric antigens used in this work allowed also to overcome the common hurdles related to serodiagnosis of T. cruzi infection, especially regarding variation of efficiency parameters according to different strains and cross-reactivity with other infectious diseases.
Asunto(s)
Anticuerpos Antiprotozoarios/sangre , Enfermedad de Chagas/veterinaria , Enfermedades de los Perros/diagnóstico , Proteínas Recombinantes de Fusión/inmunología , Pruebas Serológicas/métodos , Trypanosoma cruzi/inmunología , Animales , Enfermedad de Chagas/diagnóstico , Perros , Inmunoglobulina G/sangre , Curva ROC , Sensibilidad y EspecificidadRESUMEN
Trypanosoma evansi (Kinetoplastea Trypanosomatidae) is the Trypanosoma species that infects the greatest variety of mammals worldwide. In 2014, a dog from Rio Branco/AC, in the Brazilian Amazon region, presented flagellates without evident kinetoplasts in blood and symptoms of T. evansi infection. Our aim was to investigate the occurrence of T. evansi in dogs, bats and capybaras from Rio Branco. Blood was collected from 78 dogs from residential areas near the Zoobotanical Park (PZ). The serological diagnosis by IFAT detected the presence of anti-T. evansi antibodies in 21.9% of the evaluated dogs. T. evansi DNA was detected in one dog using a higly specific target of a repeated monomer of the satellite DNA of Trypanosoma (Trypanozoon) sp. Molecular diagnosis was also performed on 182 bat spleen samples collected inside PZ, and one Carollia perspicillata was positive. The DNA sequences obtained from these two samples showed similarities with T. brucei satellite DNA. Anti-T. evansi IFAT was carried out in 46 capybaras from rural and urban areas and the infection detected in 17.4% of them. We confirmed for the first time the presence of T. evansi in Acre State and describe three putative host species involved in the parasite transmission in that Amazon region. Moreover, this is the first study that confirms the infection by T. evansi through DNA sequence analysis in the Brazilian Amazon Region.
Asunto(s)
Tripanosomiasis/veterinaria , Animales , Brasil/epidemiología , Quirópteros/parasitología , Perros/parasitología , Ratones , Ratas , Ratas Wistar , Roedores/parasitología , Análisis de Secuencia de ADN , Trypanosoma/genética , Tripanosomiasis/epidemiología , Tripanosomiasis/parasitologíaRESUMEN
Bats are ancient hosts of Trypanosoma species and their flying ability, longevity and adaptability to distinct environments indicate that they are efficient dispersers of parasites. Bats from Acre state (Amazon Biome) were collected in four expeditions conducted in an urban forest (Parque Zoobotânico) and one relatively more preserved area (Seringal Cahoeira) in Rio Branco and Xapuri municipalities. Trypanosoma sp. infection was detected by hemoculture and fresh blood examination. Isolated parasite species were identified by the similarity of the obtained DNA sequence from 18S rDNA polymerase chain reaction and reference strains. Overall, 367 bats from 23 genera and 32 species were examined. Chiropterofauna composition was specific to each municipality, although Artibeus sp. and Carollia sp. prevailed throughout. Trypanosoma sp. infection was detected in 85 bats (23·2%). The most widely distributed and prevalent genotypes were (in order) Trypanosoma cruzi TcI, T. cruzi marinkellei, Trypanosoma dionisii, T. cruzi TcIV and Trypanosoma rangeli. At least one still-undescribed Trypanosoma species was also detected in this study. The detection of T. cruzi TcI and TcIV (the ones associated with Chagas disease in Amazon biome) demonstrates the putative importance of these mammal hosts in the epidemiology of the disease in the Acre State.
Asunto(s)
Enfermedad de Chagas/parasitología , Quirópteros/parasitología , Variación Genética , Trypanosoma/genética , Animales , Brasil/epidemiología , Enfermedad de Chagas/sangre , Enfermedad de Chagas/epidemiología , Enfermedad de Chagas/transmisión , ADN Protozoario/genética , ADN Ribosómico , Ecosistema , Genotipo , Humanos , Filogenia , Análisis de Secuencia de ADN , Trypanosoma/clasificación , Trypanosoma/aislamiento & purificación , Trypanosoma cruzi/genética , Trypanosoma cruzi/aislamiento & purificación , Trypanosoma rangeli/genética , Trypanosoma rangeli/aislamiento & purificaciónRESUMEN
BACKGROUND: The aim of this work was to explore the potential risk of vector-borne Chagas disease in urban districts in northeastern Brazil, by analyzing the spatiotemporal distributions and natural infection rates with Trypanosoma cruzi of triatomine species captured in recent years. The main motivation of this work was an acute human case of Chagas disease reported in 2008 in the municipality of Sobral. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed data from community-based entomological surveillance carried out from 2010 to 2014. Triatomine natural T. cruzi infection was assessed by examination of insect feces by optical microscopy. Sites of triatomine capture were georeferenced through Google Earth and analyzed with ArcGIS. A total of 191 triatomines were collected, consisting of 82.2% Triatoma pseudomaculata, 7.9% Rhodnius nasutus, 5.8% T. brasiliensis, 3.7% Panstrongylus lutzi, and 0.5% P. megistus, with an overall natural infection index of 17.8%. Most infestations were reported in the districts of Dom José (36.2%), Padre Palhano (24.7%), and Alto do Cristo (10.6%). The overwhelming majority of insects (185/96.9%) were captured inside houses, and most insects tended to be collected in intermittent peaks. Moreover, captured triatomines tended to constitute colonies. The acute case reported in 2008 was found to be situated within a T. pseudomaculata hotspot. CONCLUSION: The triatomine collection events carried out by dwellers were aggregated in time and space into distinct foci, suggesting that insects are intermittently and artificially introduced into the city, possibly via accidental migration from their natural reservoirs. The relatively high T. cruzi infection rate indicates considerable circulation of the parasite in these areas, increasing the risk of vector-borne Chagas disease infection. These data suggest a need to strengthen epidemiological surveillance and integrate appropriate control actions targeting triatomines, T. cruzi reservoirs, and human populations. Our data also identify Chagas disease transmission as a hazard in urban areas of Sobral.
Asunto(s)
Enfermedad de Chagas/parasitología , Enfermedad de Chagas/transmisión , Insectos Vectores/parasitología , Triatominae/parasitología , Animales , Brasil/epidemiología , Enfermedad de Chagas/epidemiología , Monitoreo Epidemiológico , Humanos , Panstrongylus/parasitología , Rhodnius/parasitología , Triatoma/parasitología , Trypanosoma cruzi , Población UrbanaRESUMEN
BACKGROUND: Trypanosoma cruzi, the agent of Chagas disease in humans, has a vast reservoir of mammalian hosts in the Americas, and is classified into six genetic lineages, TcI-TcVI, with a possible seventh, TcBat. Elucidating enzootic cycles of the different lineages is important for understanding the ecology of this parasite, the emergence of new outbreaks of Chagas disease and for guiding control strategies. Direct lineage identification by genotyping is hampered by limitations of parasite isolation and culture. An indirect method is to identify lineage-specific serological reactions in infected individuals; here we describe its application with sylvatic Brazilian primates. METHODS: Synthetic peptides representing lineage-specific epitopes of the T. cruzi surface protein TSSA were used in ELISA with sera from Atlantic Forest Leontopithecus chrysomelas (golden-headed lion tamarin), L. rosalia (golden lion tamarin), Amazonian Sapajus libidinosus (black-striped capuchin) and Alouatta belzebul (red-handed howler monkey). RESULTS: The epitope common to lineages TcII, TcV and TcVI was recognised by sera from 15 of 26 L. chrysomelas and 8 of 13 L. rosalia. For 12 of these serologically identified TcII infections, the identity of the lineage infection was confirmed by genotyping T. cruzi isolates. Of the TcII/TcV/TcVI positive sera 12 of the 15 L. chrysomelas and 2 of the 8 L. rosalia also reacted with the specific epitope restricted to TcV and TcVI. Sera from one of six S. libidinous recognised the TcIV/TcIII epitopes. CONCLUSIONS: This lineage-specific serological surveillance has verified that Atlantic Forest primates are reservoir hosts of at least TcII, and probably TcV and TcVI, commonly associated with severe Chagas disease in the southern cone region of South America. With appropriate reagents, this novel methodology is readily applicable to a wide range of mammal species and reservoir host discovery.
Asunto(s)
Enfermedad de Chagas/veterinaria , Reservorios de Enfermedades/parasitología , Leontopithecus/parasitología , Enfermedades de los Monos/parasitología , Trypanosoma cruzi/aislamiento & purificación , Animales , Brasil , Enfermedad de Chagas/parasitología , Femenino , Genotipo , Leontopithecus/clasificación , Masculino , Especificidad de la Especie , Trypanosoma cruzi/genética , Trypanosoma cruzi/fisiologíaRESUMEN
BACKGROUND: Current control policies for intestinal parasitosis focuses on soil-transmitted helminths, being ineffective against Giardia intestinalis, a highly prevalent protozoon that impacts children's nutritional status in developing countries. The objective of this study was to explore spatial and molecular epidemiology of Giardia intestinalis in children of Amerindian descent in the Brazilian Amazon. METHODOLOGY/PRINCIPAL FINDINGS: A cross sectional survey was performed in the Brazilian Amazon with 433 children aged 1 to 14 years. Fecal samples were processed through parasitological techniques and molecular characterization. Prevalence of G. intestinalis infection was 16.9% (73/433), reaching 22.2% (35/158) among children aged 2-5 years, and a wide distribution throughout the city with some hot spots. Positivity-rate was similar among children living in distinct socioeconomic strata (48/280 [17.1%] and 19/116 [16.4%] below and above the poverty line, respectively). Sequencing of the ß-giardin gene revealed 52.2% (n = 12) of assemblage A and 47.8% (n = 11) of assemblage B with high haplotype diversity for the latter. The isolates clustered into two well-supported G. intestinalis clades. A total of 38 haplotypes were obtained, with the following subassemblages distribution: 5.3% (n = 2) AII, 26.3% (n = 10) AIII, 7.9% (n = 3) BIII, and 60.5% (n = 23) new B genotypes not previously described. CONCLUSIONS/SIGNIFICANCE: Giardia intestinalis infection presents a high prevalence rate among Amerindian descended children living in Santa Isabel do Rio Negro/Amazon. The wide distribution observed in a small city suggests the presence of multiple sources of infection, which could be related to environmental contamination with feces, possibly of human and animal origin, highlighting the need of improving sanitation, safe water supply and access to diagnosis and adequate treatment of infections.
Asunto(s)
Giardia lamblia/genética , Giardiasis/epidemiología , Giardiasis/genética , Proteínas Protozoarias/genética , Adolescente , Brasil/epidemiología , Niño , Preescolar , Femenino , Giardiasis/prevención & control , Humanos , Lactante , Recién Nacido , Masculino , Epidemiología Molecular , PrevalenciaRESUMEN
In this study, we report and discuss the results generated from over 20 years of studies of the Trypanosoma cruzi sylvatic transmission cycle. Our results have uncovered new aspects and reviewed old concepts on issues including reservoirs, true generalist species, association of mammalian species with distinct discrete typing units - DTUs, distribution of T. cruzi genotypes in the wild, mixed infections, and T. cruzi transmission ecology. Using parasitological and serological tests, we examined T. cruzi infection in 7,285 mammalian specimens from nine mammalian orders dispersed all over the Brazilian biomes. The obtained T. cruzi isolates were characterized by mini-exon gene sequence polymorphism and PCR RFLP to identify DTUs. Infection by T. cruzi was detected by serological methods in 20% of the examined animals and isolated from 41% of those infected, corresponding to 8% of all the examined mammals. Each mammal taxon responded uniquely to T. cruzi infection. Didelphis spp. are able to maintain high and long-lasting parasitemias (positive hemocultures) caused by TcI but maintain and rapidly control parasitemias caused by TcII to almost undetectable levels. In contrast, the tamarin species Leontopithecus rosalia and L. chrysomelas maintain long-lasting and high parasitemias caused by TcII similarly to Philander sp. The coati Nasua nasua maintains high parasitemias by both parental T. cruzi DTUs TcI or TcII and by TcII/TcIV (formerly Z3) at detectable levels. Wild and domestic canidae seem to display only a short period of reservoir competence. T. cruzi infection was demonstrated in the wild canid species Cerdocyon thous and Chrysocyon brachyurus, and positive hemoculture was obtained in one hyper carnivore species (Leopardus pardalis), demonstrating that T. cruzi transmission is deeply immersed in the trophic net. T. cruzi DTU distribution in nature did not exhibit any association with a particular biome or habitat. TcI predominates throughout (58% of the T. cruzi isolates); however, in spite of being significantly less frequent (17%), TcII is also widely distributed. Concomitant DTU infection occurred in 16% of infected mammals of all biomes and included arboreal and terrestrial species, as well as bats. TcI/TcII concomitant infection was the most common and widely dispersed, with mixed TcI/TcII infections especially common in coatis and in Didelphimorphia. The second most common pattern of concomitant infection was TcI/TcIV, observed in Chiroptera, Didelphimorphia and Primates. Taken together, our results demonstrate the complexity of T. cruzi reservoir system and its transmission strategies, indicating that there is considerably more to be learned regarding ecology of T. cruzi.
Asunto(s)
Enfermedad de Chagas/parasitología , Enfermedad de Chagas/transmisión , Vectores de Enfermedades , Estadios del Ciclo de Vida , Mamíferos/parasitología , Trypanosoma cruzi , Animales , Brasil/epidemiología , Enfermedad de Chagas/epidemiología , Ecosistema , Prevalencia , Árboles , Clima TropicalRESUMEN
The presence of acute Chagas disease (ACD) due to oral transmission is growing and expanding in several South American countries. Within the Amazon basin, the Abaetetuba municipality has been a site of recurrent cases spanning across distinct landscapes. Because Chagas disease is primarily a zoonotic infection, we compared the enzootic Trypanosoma cruzi transmission cycles in three different environmental areas of Abaetetuba to better understand this new epidemiological situation. Philander opossum was the most abundant mammalian species collected (38% of the collected mammals) with a T. cruzi prevalence of 57%, as determined by hemocultures. Didelphis marsupialis was abundant only in the area with the higher level of environmental disturbance (approximately 42%) and did not yield detectable parasitemia. Despite similarities observed in the composition of the small mammalian fauna and the prevalence of T. cruzi infection among the studied areas, the potential of these hosts to infect vectors differed significantly according to the degree of land use (with prevalences of 5%, 41%, and 64% in areas A3, A1 and A2, respectively). Domestic mammals were also found to be infected, and one canine T. cruzi isolate was obtained. Our data demonstrated that the transmission of T. cruzi in the Amazon basin is far more complex than had been previously taught and showed that the probability of humans and domestic mammals coming into contact with infected bugs can vary dramatically, even within the same municipality. The exposure of dogs to T. cruzi infection (indicated by positive serology) was the common feature among the studied localities, stressing the importance of selecting domestic mammals as sentinels in the identification of T. cruzi transmission hotspots.
Asunto(s)
Animales Domésticos , Animales Salvajes , Enfermedad de Chagas/veterinaria , Mamíferos , Trypanosoma cruzi/aislamiento & purificación , Animales , Enfermedad de Chagas/transmisión , Reservorios de Enfermedades/veterinariaRESUMEN
We report Trypanosoma cruzi infection in wild and domestic mammals from three orally acquired Chagas disease outbreak areas in Brazil. Cachoeiro do Arari (Pará) displayed a panzootic scenery (positive mammals in all ecologic strata), and human cases were probably the consequence of their exposure within the sylvatic T. cruzi transmission cycle. In Navegantes (Santa Catarina), Didelphis spp. was the main reservoir host, given that 93% were infected. In Redenção (Ceará), Monodelphis domestica and Thrichomys laurentius were also important for parasite maintenance. TCI was present in the three studied areas. Additionally, Z3 was detected in an armadillo from Pará and TCII in a triatomine from Navegantes. Domestic animals showed a high seroprevalence and should be considered sentinels in surveillance programs. The importance of a reduction in wild mammalian fauna diversity and selection of suitable T. cruzi reservoir hosts are discussed as risk factors for the re-emergence of Chagas disease.
Asunto(s)
Animales Domésticos , Animales Salvajes , Enfermedad de Chagas/transmisión , Brotes de Enfermedades , Animales , Brasil/epidemiología , Enfermedad de Chagas/epidemiología , Enfermedad de Chagas/veterinaria , Reservorios de EnfermedadesRESUMEN
An active Trypanosoma cruzi transmission cycle maintained by wild rodents in the Andean valleys of Cochabamba Bolivia is described. Wild and domestic Triatoma infestans with 60% infection with T. cruzi were found and was evidenced in 47.5% (rodents) and 26.7% (marsupial) by parasitological and/or serologycal methods. Phyllotis ocilae and the marsupial species Thylamys elegans, are the most important reservoirs followed by Bolomys lactens and Akodon boliviensis. In spite of both genotypes (TCI and TCII) being prevalent in Bolivia, in our study area only T. cruzi I is being transmitted. Our data suggest that wild T. infestans and wild small mammals play an important role in the maintenance of the transmission cycle of T. cruzi. Furthermore, the finding of high prevalence of T. cruzi infection in wild T. infestans point to the risk of the dispersion of Chagas' disease.
Asunto(s)
Enfermedad de Chagas/transmisión , Zarigüeyas/parasitología , Enfermedades de los Roedores/transmisión , Sigmodontinae/parasitología , Trypanosoma cruzi/aislamiento & purificación , Animales , Animales Salvajes , Bolivia/epidemiología , Enfermedad de Chagas/epidemiología , Reservorios de Enfermedades/parasitología , Perros , Ecosistema , Cobayas , Insectos Vectores/parasitología , Zarigüeyas/crecimiento & desarrollo , Prevalencia , Lluvia , Enfermedades de los Roedores/epidemiología , Enfermedades de los Roedores/parasitología , Estaciones del Año , Sigmodontinae/crecimiento & desarrollo , Triatoma/parasitología , Trypanosoma cruzi/fisiologíaRESUMEN
Philander frenata and Didelphis marsupialis harbor parasitism by Trypanosoma cruzi without developing any apparent disease and on the contrary to D. marsupialis, P. frenata maintains parasitism by T. cruzi II subpopulations. Here we compared the humoral immune response of the two didelphids naturally and experimentally infected with T. cruzi II group, employing SDS-PAGE/Western blot techniques and by an Indirect immunofluorescence assay. We also studied the histopathological pattern of naturally and experimentally infected P. frenata with T. cruzi. P. frenata sera recognized more antigens than D. marsupialis, and the recognition pattern did not show any change over the course of the follow up of both didelphid species. Polypeptides of 66 and 90kDa were the most prominent antigens recognized by both species in the soluble and enriched membrane fractions. P. frenata recognized intensely also a 45kDa antigen. Our findings indicate that: 1) there were no quantitative or qualitative differences in the patent or subpatent phases in the recognition pattern of P. frenata; 2) the significant differences in the recognition pattern of parasitic antigens by P. frenata and D. marsupialis sera suggest that they probably "learned" to live in harmony with T. cruzi by different strategies; 3) although P. frenata do not display apparent disease, tissular lesions tended to be more severe than has been described in D. marsupialis; and 4) Both didelphids probably acquired infection by T. cruzi after their evolutionary divergence.
Asunto(s)
Anticuerpos Antiprotozoarios/biosíntesis , Enfermedad de Chagas/veterinaria , Zarigüeyas/parasitología , Trypanosoma cruzi/fisiología , Animales , Anticuerpos Antiprotozoarios/sangre , Antígenos de Protozoos/inmunología , Western Blotting , Brasil , Enfermedad de Chagas/inmunología , Enfermedad de Chagas/patología , Modelos Animales de Enfermedad , Reservorios de Enfermedades , Técnica del Anticuerpo Fluorescente Indirecta , Interacciones Huésped-Parásitos , Humanos , Trypanosoma cruzi/inmunologíaRESUMEN
Philander frenata and Didelphis marsupialis harbor parasitism by Trypanosoma cruzi without developing any apparent disease and on the contrary to D. marsupialis, P. frenata maintains parasitism by T. cruzi II subpopulations. Here we compared the humoral immune response of the two didelphids naturally and experimentally infected with T. cruzi II group, employing SDS-PAGE/Western blot techniques and by an Indirect immunofluorescence assay. We also studied the histopathological pattern of naturally and experimentally infected P. frenata with T. cruzi. P. frenata sera recognized more antigens than D. marsupialis, and the recognition pattern did not show any change over the course of the follow up of both didelphid species. Polypeptides of 66 and 90kDa were the most prominent antigens recognized by both species in the soluble and enriched membrane fractions. P. frenata recognized intensely also a 45kDa antigen. Our findings indicate that: 1) there were no quantitative or qualitative differences in the patent or subpatent phases in the recognition pattern of P. frenata; 2) the significant differences in the recognition pattern of parasitic antigens by P. frenata and D. marsupialis sera suggest that they probably "learned" to live in harmony with T. cruzi by different strategies; 3) although P. frenata do not display apparent disease, tissular lesions tended to be more severe than has been described in D. marsupialis; and 4) Both didelphids probably acquired infection by T. cruzi after their evolutionary divergence