Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Carbohydr Polym ; 302: 120382, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36604060

RESUMEN

Hydrogels have become promising materials for food packaging due to their unique microstructure. However, hydrogel materials suitable for seafood preservation have rarely been reported. In this study, a tamarind polysaccharide-polyvinyl alcohol hydrogel with the ability to maintain seafood freshness was prepared and characterized. The hydrogel possesses quick self-healing, good tissue fitting, and freezing tolerance capability. Moreover, a peeling force of only 0.1 N between the hydrogel and the fillet tissue confirmed the non-stick properties. The FTIR characteristic peak at 1600 cm-1 and 1450 cm-1 proved the ester bond-based chemical cross-linking of the hydrogel. Release profiles at pH 6.0 to 8.0 verified the pH-responsive release of quorum-quenching (QQ) enzymes over 120 h, which enabled the hydrogel to achieve biofilm and protease inhibitory activities. In vivo spoilage tests showed that the shelf life of hydrogel-coated red snapper fillets was extended by >3 days. These results illustrate the potential of the prepared hydrogel as functional packaging for seafood preservation.


Asunto(s)
Tamarindus , Animales , Tamarindus/química , Percepción de Quorum , Polisacáridos/farmacología , Polisacáridos/química , Alcohol Polivinílico/química , Hidrogeles/química , Peces
2.
ACS Appl Mater Interfaces ; 15(4): 6035-6046, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36689615

RESUMEN

Hundreds of millions of tons of food resources are wasted annually due to microbial contamination. Effective food packaging can prevent food contamination and wastage. However, traditional food packaging has the problem of low release of bioactive substances. This study aimed to prepare a pH-responsive polysaccharide hydrogel (GDPP) by double cross-linking of ester and hydrogen bonds that could result in a high release of bioactive substances and no residual peeling. The infrared results showed the existence of ester bonds in the hydrogel, and the scanning electron microscopy results showed the porous network structure of the hydrogel. The results of texture profile analysis and self-healing tests showed that GDPP-1 has good mechanical and self-healing properties. Moreover, the ester bond of the hydrogel broke in response to the pH in the environment, improving the swelling and release properties of the hydrogel. The equilibrium swelling ratio of GDPP-1 was greater than 1000%, and the release rate of bioactive substances was more than 80%. Notably, the results of peeling experiments showed that only 0.1 N external force was needed to separate the hydrogel from the salmon, and no residue was observed on the salmon surface. The final freshness test results showed that the hydrogel effectively prolonged the shelf life of refrigerated salmon for 3-6 days. These findings indicated that hydrogels could be used in food packaging to extend the shelf life of refrigerated food. Furthermore, their advantages of low cost and simple preparation can better meet the needs of food industry applications.


Asunto(s)
Antineoplásicos , Hidrogeles , Hidrogeles/química , Polisacáridos , Ésteres , Concentración de Iones de Hidrógeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA