Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Rev Sci Instrum ; 95(5)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38819257

RESUMEN

Aiming at the problem that the cement production process is inherently affected by uncertainty, time delay, and strong coupling among variables, this paper proposed a novel soft sensor of free calcium oxide in a cement clinker. The model utilizes a dual-parallel integrated structure with an optimized integration of one-dimensional convolutional neural networks, long and short-term memory networks, graphical neural networks, and extreme gradient boosting. The proposed model can mitigate the risks associated with overfitting while incorporating the strengths of each individual model and excels in extracting both local and global features as well as temporal and spatial characteristics from the original time series data, ensuring its stability. The experimental results demonstrate that this dual-parallel integrated model exhibits superior robustness, predictive accuracy, and generalization capabilities when compared to single models or enhancements made to other deep learning algorithms.

2.
Molecules ; 27(2)2022 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-35056650

RESUMEN

Near-infrared (NIR) spectroscopy and characteristic variables selection methods were used to develop a quick method for the determination of cellulose, hemicellulose, and lignin contents in Sargassum horneri. Calibration models for cellulose, hemicellulose, and lignin in Sargassum horneri were established using partial least square regression methods with full variables (full-PLSR). The PLSR calibration models were established by four characteristic variables selection methods, including interval partial least square (iPLS), competitive adaptive reweighted sampling (CARS), correlation coefficient (CC), and genetic algorithm (GA). The results showed that the performance of the four calibration models, namely iPLS-PLSR, CARS-PLSR, CC-PLSR, and GA-PLSR, was better than the full-PLSR calibration model. The iPLS method was best in the performance of the models. For iPLS-PLSR, the determination coefficient (R2), root mean square error (RMSE), and residual predictive deviation (RPD) of the prediction set were as follows: 0.8955, 0.8232%, and 3.0934 for cellulose, 0.8669, 0.4697%, and 2.7406 for hemicellulose, and 0.7307, 0.7533%, and 1.9272 for lignin, respectively. These findings indicate that the NIR calibration models can be used to predict cellulose, hemicellulose, and lignin contents in Sargassum horneri quickly and accurately.


Asunto(s)
Algoritmos , Celulosa/análisis , Lignina/análisis , Polisacáridos/análisis , Sargassum/química , Espectroscopía Infrarroja Corta/métodos , Calibración , Análisis de los Mínimos Cuadrados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...