Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Neuropsychiatr Dis Treat ; 15: 1929-1937, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31371966

RESUMEN

Background: The goal of this study was to identify the physiological factors related to the blood concentration of lithium in Chinese Han patients with bipolar disorder (BD). Materials and methods: A total of 186 Chinese Han patients with BD were assessed. Patients were recruited from the Anhui Mental Health Center. The concentrations of serum lithium were measured by a Dimension RxL Max biochemistry analyzer. Physiological factors, including body weight, body mass index (BMI), and routine laboratory parameters, were collected. Relationships between the serum lithium concentration and relevant clinical data were analyzed by Pearson correlation tests, and the independent relationships were determined by multivariate linear regression analysis. Results: Pearson correlation analysis showed that serum lithium concentrations were positively correlated with creatinine concentrations (r=0.147, P=0.046), Mg2+ concentrations (r=0.151, P=0.04), and the percentage of neutrophils (r=0.178, P=0.015) and negatively correlated with high-density lipoprotein (HDL) concentrations (r=-0.142, P=0.05), apolipoprotein A1 concentrations (r=-0.169, P=0.02), and Na+ concentrations (r=-0.148, P=0.046) in 186 patients with BD. Furthermore, multivariate linear regression analysis showed that serum lithium concentrations were negatively associated with Na+ concentrations and positively associated with the percentage of neutrophils. Conclusion: These results suggest that physiological factors, including creatinine, HDL, apolipoprotein A1, Na+, and Mg2+ concentrations and percentage of neutrophils, might be related to serum lithium concentrations and provide a basis for parameter selection of lithium population pharmacokinetics in Chinese Han patients with BD.

2.
Neuropsychiatr Dis Treat ; 15: 3583-3597, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31920318

RESUMEN

Depression is a debilitating mental illness that affects up to 120 million people worldwide; it is currently determined based on subjective diagnostic schemes that are limited by high uncertainty. Hence, there is an urgent need to identify effective and reliable biomarkers to increase diagnostic accuracy. MicroRNAs (miRNAs) constitute a recently discovered class of non-coding RNAs that play a key role in the regulation of gene expression by modulating translation, messenger RNA (mRNA) degradation, or stability of mRNA targets. Dysregulated expression of miRNAs is being investigated as a clinical biomarker for a variety of diseases, including depression. Accumulating evidence has shown that miRNAs participate in many aspects of neural plasticity, neurogenesis, and the stress response. This is supported by more direct studies based on human postmortem brain tissue that strongly indicate that miRNAs not only play a key role in the pathogenesis of major depressive disorder, but also present potential for the development of therapeutic targets. miRNAs in the peripheral and central nervous system are being considered as potential biomarkers in the diagnosis of depression and in monitoring the therapeutic response to antidepressants, owing to their stability, tissue-specificity, and disease-specific expression. In this review, we focus on various miRNAs in tissues and fluids that could be employed as diagnostic and therapeutic biomarkers in patients with depression.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA