RESUMEN
Mitochondria orchestrate the production of new mitochondria and the removal of damaged ones to dynamically maintain mitochondrial homeostasis through constant biogenesis and clearance mechanisms. Mitochondrial quality control particularly relies on mitophagy, defined as selective autophagy with mitochondria-targeting specificity. Most ROS are derived from mitochondria, and the physiological concentration of mitochondrial ROS (mtROS) is no longer considered a useless by-product, as it has been proven to participate in immune and autophagy pathway regulation. However, excessive mtROS appears to be a pathogenic factor in several diseases, including acute lung injury (ALI). The interplay between mitophagy and mtROS is complex and closely related to ALI. Here, we review the pathways of mitophagy, the intricate relationship between mitophagy and mtROS, the role of mtROS in the pathogenesis of ALI, and their effects and related progression in ALI induced by different conditions.
Asunto(s)
Lesión Pulmonar Aguda , Mitocondrias , Mitofagia , Especies Reactivas de Oxígeno , Lesión Pulmonar Aguda/metabolismo , Lesión Pulmonar Aguda/patología , Humanos , Especies Reactivas de Oxígeno/metabolismo , Mitocondrias/metabolismo , AnimalesRESUMEN
BACKGROUND AND AIMS: Aerobic glycolysis reprogramming occurs during HSC activation, but how it is initiated and sustained remains unknown. We investigated the mechanisms by which canonical Wnt signaling regulated HSC glycolysis and the therapeutic implication for liver fibrosis. APPROACH AND RESULTS: Glycolysis was examined in HSC-LX2 cells upon manipulation of Wnt/ß-catenin signaling. Nuclear translocation of lactate dehydrogenase A (LDH-A) and its interaction with hypoxia-inducible factor-1α (HIF-1α) were investigated using molecular simulation and site-directed mutation assays. The pharmacological relevance of molecular discoveries was intensified in primary cultures, rodent models, and human samples. HSC glycolysis was enhanced by Wnt3a but reduced by ß-catenin inhibitor or small interfering RNA (siRNA). Wnt3a-induced rapid transactivation and high expression of LDH-A dependent on TCF4. Wnt/ß-catenin signaling also stimulated LDH-A nuclear translocation through importin ß2 interplay with a noncanonical nuclear location signal of LDH-A. Mechanically, LDH-A bound to HIF-1α and enhanced its stability by obstructing hydroxylation-mediated proteasome degradation, leading to increased transactivation of glycolytic genes. The Gly28 residue of LDH-A was identified to be responsible for the formation of the LDH-A/HIF-1α transcription complex and stabilization of HIF-1α. Furthermore, LDH-A-mediated glycolysis was required for HSC activation in the presence of Wnt3a. Results in vivo showed that HSC activation and liver fibrosis were alleviated by HSC-specific knockdown of LDH-A in mice. ß-catenin inhibitor XAV-939 mitigated HSC activation and liver fibrosis, which were abrogated by HSC-specific LDH-A overexpression in mice with fibrosis. CONCLUSIONS: Inhibition of HSC glycolysis by targeting Wnt/ß-catenin signaling and LDH-A had therapeutic promise for liver fibrosis.
Asunto(s)
Subunidad alfa del Factor 1 Inducible por Hipoxia , Cirrosis Hepática , Vía de Señalización Wnt , beta Catenina , Animales , Humanos , Ratones , beta Catenina/metabolismo , Glucólisis , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Lactato Deshidrogenasa 5/metabolismo , Vía de Señalización Wnt/fisiología , Células Estrelladas Hepáticas/metabolismoRESUMEN
BACKGROUND AND PURPOSE: Senescence in hepatic stellate cells (HSCs) limits liver fibrosis. Glutaminolysis promotes HSC activation. Here, we investigated how emodin affected HSC senescence involving glutaminolysis. EXPERIMENTAL APPROACH: Senescence, glutaminolysis metabolites, Nur77 nuclear translocation, glutaminase 1 (GLS1) promoter methylation and related signalling pathways were examined in human HSC-LX2 cells using multiple cellular and molecular approaches. Fibrotic mice with shRNA-mediated knockdown of Nur77 were treated with emodin-vitamin A liposome for investigating the mechanisms in vivo. Human fibrotic liver samples were examined to verify the clinical relevance. KEY RESULTS: Emodin upregulated several key markers of senescence and inhibited glutaminolysis cascade in HSCs. Emodin promoted Nur77 nuclear translocation, and knockdown of Nur77 abolished emodin blockade of glutaminolysis and induction of HSC senescence. Mechanistically, emodin facilitated Nur77/DNMT3b interaction and increased GLS1 promoter methylation, leading to inhibited GLS1 expression and blockade of glutaminolysis. Moreover, the glutaminolysis intermediate α-ketoglutarate promoted extracellular signal-regulated kinase (ERK) phosphorylation, which in turn phosphorylated Nur77 and reduced its interaction with DNMT3b. This led to decreased GLS1 promoter methylation and increased GLS1 expression, forming an ERK/Nur77/glutaminolysis positive feedback loop. However, emodin repressed ERK phosphorylation and interrupted the feedback cascade, stimulating senescence in HSCs. Studies in mice showed that emodin-vitamin A liposome inhibited glutaminolysis and induced senescence in HSCs, and consequently alleviated liver fibrosis; but knockdown of Nur77 abrogated these beneficial effects. Similar alterations were validated in human fibrotic liver tissues. CONCLUSIONS AND IMPLICATIONS: Emodin stimulated HSC senescence through interruption of glutaminolysis. HSC-targeted delivery of emodin represented a therapeutic option for liver fibrosis.
Asunto(s)
Emodina , Ratones , Humanos , Animales , Emodina/farmacología , Emodina/metabolismo , Células Estrelladas Hepáticas , Glutaminasa/metabolismo , Glutaminasa/farmacología , Liposomas/metabolismo , Liposomas/farmacología , Epigénesis Genética , Vitamina A/metabolismo , Vitamina A/farmacología , Proliferación Celular , Cirrosis Hepática/metabolismo , Fibrosis , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Hígado/metabolismoRESUMEN
BACKGROUND: LSECs (Liver sinusoidal endothelial cells) are the portal of liver, their pathological angiogenesis plays a constructive role in etiopathogenesis of liver fibrosis by affecting liver tissue repair and inflammatory drive. Although intervention in angiogenesis can effectively inhibit abnormal activation of LSEC, no effective drugs have been found to treat liver fibrosis. PURPOSE: We investigated the effect of the natural compound Curcumol on LSEC angiogenesis and elucidated the novel underlying mechanism, expecting to provide a scientific basis for exploring potential therapeutic drugs for liver fibrosis. METHODS: Various cellular and molecular assays, as well as genetic assays, were used to detect pathological angiogenesis and changes in glycolysis levels in cultured rat LSECs and mouse liver fibrosis models. RESULTS: Transcription factor KLF5 is able to influence the angiogenic properties of LSEC by regulating the glycolytic process, and affect the expression of LDH-A by transcriptionally binding to its promoter. In our study, we were surprised to find that LDH-A (the final step of glycolysis) has a strong regulatory effect on the glycolytic process of LSEC. Through in-depth study, we found that LDH-A could affect the transcriptional activity of KLF5, thus forming a positive feedback loop. Curcumol could break this positive feedback loop and inhibit the glycolysis-dependent angiogenic nature of LSEC, thus alleviating liver fibrosis. Curcumol reduced extracellular matrix (ECM) deposition, attenuated pathological angiogenesis in LSEC, and decreased the level of CCl4-induced liver fibrosis in mice. CONCLUSION: Our results demonstrated the great utilization potentiality of KLF5 in liver fibrosis, and the innovative discovery that LDH-A regulates the glycolytic process and forms a malignant feedback loop by exerting non-enzymatic effects. It also reveals the prospect of Curcumol-regulated KLF5/LDH-A feedback loop in the treatment of liver fibrosis, providing a new option for the future medicine of liver fibrosis.
Asunto(s)
Células Endoteliales , Cirrosis Hepática , Ratas , Ratones , Animales , Lactato Deshidrogenasa 5/metabolismo , Lactato Deshidrogenasa 5/farmacología , Retroalimentación , Cirrosis Hepática/tratamiento farmacológico , Hígado/metabolismo , Modelos Animales de Enfermedad , Glucólisis , Neovascularización Patológica/tratamiento farmacológico , Factores de Transcripción de Tipo Kruppel/metabolismoRESUMEN
BACKGROUND: The most significant cause of treatment failure in chronic myeloid leukemia (CML) is a persistent population of minimal residual cells. Emerging evidences showed that methylation of SHP-1 contributed to Imatinib (IM) resistance. Baicalein was reported to have an effect on reversal of chemotherapeutic agents resistance. However, the molecular mechanism of Baicalein on JAK2/STAT5 signaling inhibition against drug resistance in bone marrow (BM) microenvironment that had not been clearly revealed. METHODS: We co-cultured hBMSCs and CML CD34+ cells as a model of SFM-DR. Further researches were performed to clarify the reverse mechanisms of Baicalein on SFM-DR model and engraftment model. The apoptosis, cytotoxicity, proliferation, GM-CSF secretion, JAK2/STAT5 activity, the expression of SHP-1 and DNMT1 were analyzed. To validate the role of SHP-1 on the reversal effect of Baicalein, the SHP-1 gene was over-expressed by pCMV6-entry shp-1 and silenced by SHP-1 shRNA, respectively. Meanwhile, the DNMT1 inhibitor decitabine was used. The methylation extent of SHP-1 was evaluated using MSP and BSP. The molecular docking was replenished to further explore the binding possibility of Baicalein and DNMT1. RESULTS: BCR/ABL-independent activation of JAK2/STAT5 signaling was involved in IM resistance in CML CD34+ subpopulation. Baicalein significantly reversed BM microenvironment-induced IM resistance not through reducing GM-CSF secretion, but interfering DNMT1 expression and activity. Baicalein induced DNMT1-mediated demethylation of the SHP-1 promoter region, and subsequently activated SHP-1 re-expression, which resulted in an inhibition of JAK2/STAT5 signaling in resistant CML CD34+ cells. Molecular docking model indicated that DNMT1 and Baicalein had binding pockets in 3D structures, which further supported Baicalein might be a small-molecule inhibitor targeting DNMT1. CONCLUSIONS: The mechanism of Baicalein on improving the sensitivity of CD34+ cells to IM might be correlated with SHP-1 demethylation by inhibition of DNMT1 expression. These findings suggested that Baicalein could be a promising candidate by targeting DNMT1 to eradicate minimal residual disease in CML patients. Video Abstract.
Asunto(s)
Factor Estimulante de Colonias de Granulocitos y Macrófagos , Leucemia Mielógena Crónica BCR-ABL Positiva , Humanos , Desmetilación , Flavonoides , Mesilato de Imatinib , Simulación del Acoplamiento Molecular , Factor de Transcripción STAT5 , Microambiente TumoralRESUMEN
ETHNOPHARMACOLOGICAL RELEVANCE: A key event in the pathogenesis of acute-on-chronic liver failure (ACLF) is the imbalance in the systemic immune response; immunosuppression in patients with ACLF contributes to poor prognosis. The Yi-Qi-Jian-Pi formula (YQJPF) may improve T lymphocyte immune function in patients with ACLF. AIM OF THE STUDY: To investigate the immune mechanism of YQJPF in vivo and in vitro. MATERIALS AND METHODS: An ACLF rat model was established by injection of CCl4, lipopolysaccharide, and D-galactosamine. We examined the effect of different doses of YQJPF (6.43, 12.87, 25.74 g/kg) on liver injury and immune function in the ACLF rat model. Magnetic-activated cell sorting was used to sort the CD8+ T lymphocytes in the spleen for lymphocyte function detection. In primary CD8+ T lymphocytes and Jurkat cell lines, the expression of mitochondrial function and biogenesis and autophagy related markers were detected using molecular biological methods and flow cytometry analysis. RESULTS: YQJPF improved the peripheral blood lymphocyte count and proportion of CD8+ T lymphocytes in ACLF rats, increased pro-inflammatory factors (IL-2, IFN-λ, and TNF-α), and reduced anti-inflammatory factors (IL-10 and TGF ß1). YQJPF also improved metabolism and mitochondrial homeostasis in CD8+ T lymphocytes, alleviated lymphocyte immune dysfunction by promoting autophagy, upregulated mitochondrial biogenesis by promoting PGC-1α, NRF-1, and TFAM expression, and regulated the relationship between autophagy and mitochondrial biogenesis via PGC-1α. CONCLUSIONS: Our results suggest that YQJPF could improve immune function in a rat model of ACLF, possibly via affecting the homeostasis of lymphatic mitochondria in CD8+ T lymphocytes. YQJPF may enhance lymphocyte mitochondrial biosynthesis and promote lymphocyte autophagy. PGC-1α is a possible upstream regulatory target of YQJPF.
Asunto(s)
Insuficiencia Hepática Crónica Agudizada , Ratas , Animales , Insuficiencia Hepática Crónica Agudizada/patología , Biogénesis de Organelos , Linfocitos T CD8-positivos , Autofagia , InmunidadRESUMEN
The roles of nuclear receptor subfamily 1 group d member 1 (NR1D1) and the circadian clock in liver fibrosis remain unclear. Here, we showed that liver clock genes, especially NR1D1, were dysregulated in mice with carbon tetrachloride (CCl4)-induced liver fibrosis. In turn, disruption of the circadian clock exacerbated experimental liver fibrosis. NR1D1-deficient mice were more sensitive to CCl4-induced liver fibrosis, supporting a critical role of NR1D1 in liver fibrosis development. Validation at the tissue and cellular levels showed that NR1D1 was primarily degraded by N6-methyladenosine (m6A) methylation in a CCl4-induced liver fibrosis model, and this result was also validated in rhythm-disordered mouse models. In addition, the degradation of NR1D1 further inhibited the phosphorylation of dynein-related protein 1-serine site 616 (DRP1S616), resulting in weakened mitochondrial fission function and increased mitochondrial DNA (mtDNA) release in hepatic stellate cell (HSC), which in turn activated the cGMP-AMP synthase (cGAS) pathway. Activation of the cGAS pathway induced a local inflammatory microenvironment that further stimulated liver fibrosis progression. Interestingly, in the NR1D1 overexpression model, we observed that DRP1S616 phosphorylation was restored, and cGAS pathway was also inhibited in HSCs, resulting in improved liver fibrosis. Taken together, our results suggest that targeting NR1D1 may be an effective approach to liver fibrosis prevention and management.
Asunto(s)
Relojes Circadianos , Células Estrelladas Hepáticas , Ratones , Animales , Metilación , Cirrosis Hepática/metabolismo , Hígado , Nucleotidiltransferasas , Tetracloruro de Carbono/metabolismo , Tetracloruro de Carbono/farmacología , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/metabolismoRESUMEN
Background and Aims: Naringenin is an anti-inflammatory flavonoid that has been studied in chronic liver disease. The mechanism specific to its antifibrosis activity needs further investigation This study was to focused on the cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS) pathway in hepatic stellate cells and clarified the antifibrosis mechanism of naringenin. Methods: The relationship between the cGAS-stimulator of interferon genes (STING) pathway and liver fibrosis was analyzed using the Gene Expression Omnibus database. Histopathology, immunohistochemistry, fluorescence staining, Western blotting and polymerase chain reaction were performed to assess gene and protein expression levels associated with the cGAS pathway in clinical liver tissue samples and mouse livers. Molecular docking was performed to evaluate the relationship between naringenin and cGAS, and western blotting was performed to study the expression of inflammatory factors downstream of cGAS in vitro. Results: Clinical database analyses showed that the cGAS-STING pathway is involved in the occurrence of chronic liver disease. Naringenin ameliorated liver injury and liver fibrosis, decreased collagen deposition and cGAS expression, and inhibited inflammation in carbon tetrachloride (CCl4)-treated mice. Molecular docking found that cGAS may be a direct target of naringenin. Consistent with the in vivo results, we verified the inhibitory effect of naringenin on activated hepatic stellate cells (HSCs). By using the cGAS-specific agonist double-stranded (ds)DNA, we showed that naringenin attenuated the activation of cGAS and its inflammatory factors affected by dsDNA. We verified that naringenin inhibited the cGAS-STING pathway, thereby reducing the secretion of inflammatory factors by HSCs to ameliorate liver fibrosis. Conclusions: Interrupting the cGAS-STING pathway helped reverse the fibrosis process. Naringenin has potential as an antihepatic fibrosis drug.
RESUMEN
Background: Hypertension-mediated organ damage (HMOD) is an emerging problem among young adults. The potential role of chronic immune-mediated inflammation in the pathogenesis of HMOD is increasingly being recognized. High-mobility group box 2 (HMGB2) is known for its role in the modulation of innate immunity and exerts signaling functions that affect various inflammatory diseases. However, the association between HMGB2 and HMOD in young adults remains unclear. Objectives: The aim of this study was to explore the association between HMGB2 and subclinical HMOD in young adults. Design: This is a cross-sectional study. Methods: Body composition, carotid ultrasound, carotid-femoral PWV (cf-PWV) measures, echocardiography, serum HMGB2 levels, and serum classic cardiometabolic risk factors were measured in 988 untreated young adults. We estimated the risk related to serum HMGB2 using multivariable-adjusted linear and logistic regression models. Then, we conducted a pathway overrepresentation analysis to examine which key biological pathways may be linked to serum HMGB2 in young adults with HMOD. Results: Among the 988 untreated young adults, we identified four distinct hypertension phenotypes: normotension (40.0%), white-coat hypertension (16.0%), masked hypertension (20.9%), and sustained hypertension (23.1%). High levels of serum HMGB2 were related to increased carotid intima-media thickness (cIMT) and left ventricular mass index (LVMI), higher cf-PWV and blood pressure, and a lower estimated glomerular filtration rate (eGFR). Linear regression analysis showed that serum HMGB2 was positively associated with cf-PWV and negatively associated with eGFR in all patients. Multivariate analysis showed that high levels of serum HMGB2 were associated with high odds of subclinical HMOD (damage in at least one organ). Biological pathway analysis indicated that patients with high serum HMGB2 levels had increased activity of pathways, related to endothelial dysfunction, inflammatory processes, and atherosclerosis. Conclusion: High serum concentrations of HMGB2 are associated with an increased risk of subclinical HMOD in untreated young adults.
RESUMEN
BACKGROUND: Qingchang Wenzhong Decoction (QCWZD), a chinese herbal prescription, is widely used for ulcerative colitis (UC). Nevertheless, the active ingredients and mechanism of QCWZD in UC have not yet been explained clearly. PURPOSE: This research focuses on the identification of the effective ingredients of QCWZD and the prediction and verification of their potential targets. METHODS: The UC mice were established by adding 3.0% dextran sulfate sodium (DSS) to sterile water for one week. Concurrently, mice in the treatment group were gavage QCWZD or mesalazine. LC-MS analyzed the main components absorbed after QCWZD treatment, and network pharmacology predicted their possible targets. ELISA, qPCR, immunohistochemistry and immunofluorescence experiments were used to evaluate the colonic inflammation level and the intestinal barrier completeness. The percentage of Th17 and Treg lymphocytes was detected by flow cytometry. RESULTS: After QCWZD treatment, twenty-seven compounds were identified from the serum. In addition, QCWZD treatment significantly reduced the increased myeloperoxidase (MPO) and inflammatory cell infiltration caused by DSS in the colonic. In addition, QCWZD can reduce the secretion of inflammatory factors in serum and promote the expression of mRNAs and proteins of occludin and ZO-1. Network pharmacology analysis indicated that inhibiting IL-6-STAT3 pathway may be necessary for QCWZD to treat UC. Flow cytometry analysis showed that QCWZD can restore the normal proportion of Th17 lymphocytes in UC mice. Mechanistically, QCWZD inhibited the phosphorylation of JAK2-STAT3 pathway, reducing the transcriptional activation of RORγT and IL-17A. CONCLUSIONS: Overall, for the first time, our work revealed the components of QCWZD absorbed into blood, indicated that the effective ingredients of QCWZD may inhibit IL-6-STAT3 pathway and inhibit the differentiation of Th17 lymphocytes to reduce colon inflammation.
Asunto(s)
Colitis Ulcerosa , Animales , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/metabolismo , Colon , Sulfato de Dextran , Modelos Animales de Enfermedad , Inflamación/metabolismo , Interleucina-17/metabolismo , Interleucina-6/metabolismo , Mesalamina/metabolismo , Mesalamina/farmacología , Mesalamina/uso terapéutico , Ratones , Ratones Endogámicos C57BL , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Ocludina/metabolismo , Peroxidasa/metabolismo , Células Th17 , AguaRESUMEN
Schistosomiasis is a serious and widespread parasitic disease caused by infection with Schistosoma. Because the parasite's eggs are primarily responsible for schistosomiasis dissemination and pathogenesis, inhibiting egg production is a potential approach to control the spread and severity of the disease. The bromodomain and extra-terminal (BET) proteins represent promising targets for the development of epigenetic drugs against Schistosoma. JQ-1 is a selective inhibitor of the BET protein family. In the present study, JQ-1 was applied to S. japonicum in vitro. By using laser confocal scanning microscopy and EdU incorporation assays, we showed that application of JQ-1 to worms in vitro affected egg laying and the development of both the male and female reproductive systems. JQ-1 also inhibited the expression of the reproductive-related genes SjPlk1 and SjNanos1 in S. japonicum. Mice infected with S. japonicum were treated with JQ-1 during egg granuloma formation. JQ-1 treatment significantly reduced the size of the liver granulomas and levels of serum alanine aminotransferase and aspartate aminotransferase in mice and suppressed both egg laying and the development of male and female S. japonicum reproductive systems in vivo. Moreover, the mRNA expression levels of some proinflammatory cytokines were decreased in the parasites. Our findings suggest that JQ-1 treatment attenuates S. japonicum egg-induced hepatic granuloma due at least in part to suppressing the development of the reproductive system and egg production of S. japonicum. These findings further suggest that JQ-1 or other BET inhibitors warrant additional study as a new approach for the treatment or prevention of schistosomiasis.
Asunto(s)
Hepatitis , Schistosoma japonicum , Esquistosomiasis Japónica , Esquistosomiasis , Animales , Femenino , Genitales Femeninos , Granuloma/patología , Hígado/patología , Masculino , Ratones , Esquistosomiasis Japónica/parasitologíaRESUMEN
Liver fibrosis is a repair process of chronic liver injuries induced by toxic substances, pathogens, and inflammation, which exhibits a feature such as deposition of the extracellular matrix. The initiation and progression of liver fibrosis heavily relies on excessive activation of hepatic stellate cells (HSCs). The activated HSCs express different kinds of chemokine receptors to further promote matrix remodulation. The long-term progression of liver fibrosis will contribute to dysfunction of the liver and ultimately cause hepatocellular carcinoma. The liver also has abundant innate immune cells, including DCs, NK cells, NKT cells, neutrophils, and Kupffer cells, which conduct complicated functions to activation and expansion of HSCs and liver fibrosis. Autophagy is one specific type of cell death, by which the aberrantly expressed protein and damaged organelles are transferred to lysosomes for further degradation, playing a crucial role in cellular homeostasis. Autophagy is also important to innate immune cells in various aspects. The previous studies have shown that dysfunction of autophagy in hepatic immune cells can result in the initiation and progression of inflammation in the liver, directly or indirectly causing activation of HSCs, which ultimately accelerate liver fibrosis. Given the crosstalk between innate immune cells, autophagy, and fibrosis progression is complicated, and the therapeutic options for liver fibrosis are quite limited, the exploration is essential. Herein, we review the previous studies about the influence of autophagy and innate immunity on liver fibrosis and the molecular mechanism to provide novel insight into the prevention and treatment of liver fibrosis.
RESUMEN
The excessive deposition of extracellular matrix (ECM) is the main characteristic of liver fibrosis, and hepatic stellate cells (HSCs) are the main source of ECM. The removal of activated HSCs has a reversal effect on liver fibrosis. Western blot and MTT analysis indicated that curcumol could relieve hepatic fibrosis by promoting HSCs receptor-interacting protein kinase 1/3 (RIP1/RIP3)-dependent necroptosis. Importantly, autophagy flow was monitored by constructing the mRFP-GFP-LC3 plasmid, and it was found that curcumol cleared activated HSCs in a necroptosis manner that was dependent on autophagy. Our study suggested that the activation of necrosome formed by RIP1 and RIP3 depended on Atg5, and that autophagosomes were also necessary for curcumol-induced necroptosis. Furthermore, microscale thermophoresis and co-immunoprecipitation assay results proved that curcumol could target Sirt1 to regulate autophagy by reducing the acetylation level of Atg5. The HSCs-specific silencing of Sirt1 exacerbated CCl4 -induced liver fibrosis in mice. The deacetylation of Atg5 not only accelerated the accumulation of autophagosomes but also enhanced the interaction between Atg5 and RIP1/RIP3 to induce necroptosis. Overall, our study indicated that curcumol could activate Sirt1 to promote Atg5 deacetylation and enhanced its protein-protein interaction function, thereby inducing autophagy and promoting the necroptosis of HSCs to reduce liver fibrosis.
Asunto(s)
Células Estrelladas Hepáticas , Lisina , Animales , Autofagia , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/tratamiento farmacológico , Lisina/metabolismo , Ratones , Necroptosis , Sesquiterpenos , Sirtuina 1/metabolismoRESUMEN
Liver fibrosis is a repair response process after chronic liver injury. During this process, activated hepatic stellate cells (HSCs) will migrate to the injury site and secrete extracellular matrix (ECM) to produce fibrous scars. Clearing activated HSCs may be a major strategy for the treatment of liver fibrosis. Curcumol isolated from plants of the genus Curcuma can effectively induce apoptosis of many cancer cells, but whether it can clear activated HSCs remains to be clarified. In the present study, we found that the effect of curcumol in treating liver fibrosis was to clear activated HSCs by inducing necroptosis of HSCs. Receptor-interacting protein kinase 3 (RIP3) silencing could impair necroptosis induced by curcumol. Interestingly, endoplasmic reticulum (ER) stress-induced cellular dysfunction was associated with curcumol-induced cell death. The ER stress inhibitor 4-PBA prevented curcumol-induced ER stress and necroptosis. We proved that ER stress regulated curcumol-induced necroptosis in HSCs via Sirtuin-1(Sirt1)/Notch signaling pathway. Sirt1-mediated deacetylation of the intracellular domain of Notch (NICD) led to degradation of NICD, thereby inhibiting Notch signalling pathway to alleviate liver fibrosis. Specific knockdown of Sirt1 by HSCs in male ICR mice further exacerbated CCl4-induced liver fibrosis. Overall, our study elucidates the anti-fibrotic effect of curcumol and reveals the underlying mechanism between ER stress and necroptosis.
Asunto(s)
Células Estrelladas Hepáticas , Sirtuina 1 , Ratones , Animales , Sirtuina 1/genética , Necroptosis , Ratones Endogámicos ICR , Cirrosis Hepática/inducido químicamente , Estrés del Retículo EndoplásmicoRESUMEN
Relevant researches have recognized the vital role of inducing ferroptosis in the treatment of tumor. The latest findings indicate that PEBP1/15-LO can play an essential role in the process of cell death. However, its role in regulating ferroptosis in hepatocellular carcinoma (simplified by HCC) remains unclear. The previous research of our team has proved that DHA can induce ferroptosis of hepatic stellate cells. In this study, we found that DHA could also induce ferroptosis in HCC cells. Interestingly, DHA induced ferroptosis by promoting the formation of PEBP1/15-LO and promoting cell membrane lipid peroxidation. In addition, we also found that DHA had no obvious regulatory effect on 15-LO, but it could promote PEBP1 protein expression. Importantly, we discovered the upregulation of PEBP1 induced by DHA was related to the inhibition of its ubiquitination degradation. In vivo experiments have also obtained consistent results that DHA can inhibit tumor growth and affect the expression of ferroptosis markers in tumor tissues, which would be partially offset by interference with PEBP1.
Asunto(s)
Araquidonato 15-Lipooxigenasa/metabolismo , Artemisininas/farmacología , Carcinoma Hepatocelular/tratamiento farmacológico , Ferroptosis , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Neoplasias Hepáticas/tratamiento farmacológico , Proteínas de Unión a Fosfatidiletanolamina/metabolismo , Animales , Antimaláricos/farmacología , Apoptosis , Araquidonato 15-Lipooxigenasa/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Proliferación Celular , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Proteínas de Unión a Fosfatidiletanolamina/genética , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Activation of hepatic stellate cells (HSCs) is a central event in the pathogenesis of liver fibrosis and is often accompanied by the disappearance of lipid droplets (LDs). Although interference with LD metabolism can effectively reverse the activation of HSCs, there is currently no effective therapy for liver fibrosis. Our previous evidence indicates that long non-coding RNA (lncRNA)-H19 plays an essential role in LD metabolism of HSC. In this study, we investigated the potential molecular mechanism of dihydroartemisinin (DHA) inhibits LD metabolism and liver fibrosis by regulating H19-AMPK pathway. We found that DHA restores LDs content in activated HSCs via reducing the transcription of H19 driven by hypoxia inducible factor 1 subunit alpha (HIF1α) and inhibiting the lipid oxidation signal mediated by AMP-activated protein kinase (AMPK) phosphorylation. In vivo experiments, we have proved that DHA reduced the deposition of extracellular matrix (ECM) and reduce the level of liver fibrosis in CCl4-induced liver fibrosis of mice. In summary, our results emphasize the importance of H19 in liver fibrosis and the potential of DHA to regulate H19 to treat liver fibrosis, providing a new direction for the prevention and treatment of liver fibrosis.
Asunto(s)
Proteínas Quinasas Activadas por AMP/antagonistas & inhibidores , Artemisininas/uso terapéutico , Células Estrelladas Hepáticas/efectos de los fármacos , Gotas Lipídicas/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , ARN Largo no Codificante/antagonistas & inhibidores , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Artemisininas/farmacología , Línea Celular , Células Estrelladas Hepáticas/metabolismo , Humanos , Gotas Lipídicas/metabolismo , Metabolismo de los Lípidos/fisiología , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/metabolismo , Masculino , Ratones , Ratones Endogámicos ICR , ARN Largo no Codificante/metabolismoRESUMEN
ETHNOPHARMACOLOGICAL RELEVANCE: Acute-on-chronic liver failure (ACLF) is a key complication of chronic hepatitis, with a relatively high mortality rate and limited treatment options, which dramatically threatens human lives. Yi-Qi-Jian-Pi formula (YQJPF) is a herbal compound commonly used to treat liver failure. AIM OF THE STUDY: The purpose of this research is to discuss the potential molecular biological effect and mechanism of YQJPF in ACLF. MATERIALS AND METHODS: In this study, we created a rat model of ACLF by CCl4-, LPS- and D-Galactosamine (D-Gal) and an in vitro model of LPS-induced hepatocyte damage. The specific components of YQJPF and potential mechanism were explored based on bioinformatics analyses. Furthermore, we verified the effect of YQJPF on ACLF using immunohistochemistry, RT-qPCR, western blotting, and flow cytometry. RESULTS: Our research demonstrated that, after YQJPF treatment, hepatocyte injury in rats was relieved. Bioinformatics analysis showed that PI3K/AKT, HIF-1, mitochondrial apoptosis pathways played prominent roles. YQJPF promoted HIF-1α protein expression and exerted protective effects against hypoxic injury, simultaneously reducing mitochondrial ROS production, suppressing hepatocyte apoptosis. Furthermore, we showed that YQJPF accelerates PI3K/AKT pathway activation, a known broad-spectrum inhibitor of PI3K. LY294002, which was used for reverse verification, suppressed the effect of YQJPF on hypoxic injury and ROS-mediated hepatocyte apoptosis. CONCLUSIONS: YQJPF ameliorates liver injury by suppressing hypoxic injury and ROS-mediated hepatocyte apoptosis by modulating the PI3K/AKT pathway.
Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Medicamentos Herbarios Chinos/uso terapéutico , Enfermedad Hepática en Estado Terminal/tratamiento farmacológico , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Relación Dosis-Respuesta a Droga , Medicamentos Herbarios Chinos/administración & dosificación , Enfermedad Hepática en Estado Terminal/inducido químicamente , Regulación de la Expresión Génica/efectos de los fármacos , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Metilprednisolona/uso terapéutico , Fosfatidilinositol 3-Quinasas/genética , Proteínas Proto-Oncogénicas c-akt/genética , Distribución Aleatoria , Ratas , Ratas Sprague-DawleyRESUMEN
BACKGROUND: Adrenal vein sampling (AVS) is the preferred method for subtyping patients with primary aldosteronism, while the procedure is technically challenging. This study evaluated the feasibility and effectiveness of a single-catheter approach for AVS. METHODS: A retrospective analysis of 106 consecutive patients who underwent AVS was performed to determine the procedural success and complication rates. Bilateral AVS procedures were performed using a single 5-Fr Tiger catheter with repeated manual reshaping. RESULTS: We successfully advanced the catheter into the bilateral adrenal veins of all patients and reached a 90.6% procedural success rate of AVS. The procedural period was 33.0 ± 8.2 min, the fluoroscopy period was 5.8 ± 1.7 min, and the diagnostic contrast used was 17.3 ± 5.5 ml. Only one patient (0.9%) had a hematoma at the femoral puncture site. No other complications were observed. The operation period gradually shortened as the cumulative number of operations increased. The number of procedures required to overcome the learning curve was about 33 cases. CONCLUSIONS: The single-catheter approach is feasible and effective for AVS. Moreover, this approach required a relatively short learning curve for an inexperienced trainee.
Asunto(s)
Glándulas Suprarrenales/irrigación sanguínea , Cateterismo/métodos , Hiperaldosteronismo/diagnóstico , Adulto , Anciano , Cateterismo/estadística & datos numéricos , Estudios de Factibilidad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Radiografía Intervencional , Estudios RetrospectivosRESUMEN
As one of the bicyclic metabolic pathways of one-carbon metabolism, methionine metabolism is the pivot linking the folate cycle to the transsulfuration pathway. In addition to being a precursor for glutathione synthesis, and the principal methyl donor for nucleic acid, phospholipid, histone, biogenic amine, and protein methylation, methionine metabolites can participate in polyamine synthesis. Methionine metabolism disorder can aggravate the damage in the pathological state of a disease. In the occurrence and development of chronic liver diseases (CLDs), changes in various components involved in methionine metabolism can affect the pathological state through various mechanisms. A methionine-deficient diet is commonly used for building CLD models. The conversion of key enzymes of methionine metabolism methionine adenosyltransferase (MAT) 1 A and MAT2A/MAT2B is closely related to fibrosis and hepatocellular carcinoma. In vivo and in vitro experiments have shown that by intervening related enzymes or downstream metabolites to interfere with methionine metabolism, the liver injuries could be reduced. Recently, methionine supplementation has gradually attracted the attention of many clinical researchers. Most researchers agree that adequate methionine supplementation can help reduce liver damage. Retrospective analysis of recently conducted relevant studies is of profound significance. This paper reviews the latest achievements related to methionine metabolism and CLD, from molecular mechanisms to clinical research, and provides some insights into the future direction of basic and clinical research.
Asunto(s)
Hepatopatías , Metionina/metabolismo , Metionina/uso terapéutico , Animales , Enfermedad Crónica , Humanos , Hepatopatías/dietoterapia , Hepatopatías/metabolismo , Hepatopatías/patología , Metionina Adenosiltransferasa/metabolismoRESUMEN
Endoplasmic reticulum (ER) stress is easily observed in chronic liver disease, which often causes accumulation of unfolded or misfolded proteins in the ER, leading to unfolded protein response (UPR). Regulating protein degradation is an integral part of UPR to relieve ER stress. The major protein degradation system includes the ubiquitin-proteasome system (UPS) and autophagy. All three arms of UPR triggered in response to ER stress can regulate UPS and autophagy. Accumulated misfolded proteins could activate these arms, and then generate various transcription factors to regulate the expression of UPS-related and autophagy-related genes. The protein degradation process regulated by UPR has great significance in many chronic liver diseases, including non-alcoholic fatty liver disease (NAFLD), alcoholic liver disease (ALD), viral hepatitis, liver fibrosis, and hepatocellular carcinoma(HCC). In most instances, the degradation of excessive proteins protects cells with ER stress survival from apoptosis. According to the specific functions of protein degradation in chronic liver disease, choosing to promote or inhibit this process is promising as a potential method for treating chronic liver disease.