Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Cancer Cell Int ; 24(1): 309, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39252019

RESUMEN

Colon adenocarcinoma (COAD) represents a significant health concern within the population. Advancing our understanding of COAD is imperative for early detection, enabling personalized treatment interventions, and facilitating the development of effective preventive measures. The coagulation system plays a role in tumor-related pathological processes; however, its specific involvement in COAD and potential contributors remain unclear. This study aimed to establish a novel risk stratification approach by analyzing coagulation related genes (CRGs) associated with COAD. Through a comprehensive bioinformatics analysis of data from public databases, we screened COAD associated CRGs and characterized the associated molecular subtypes. After a comprehensive analysis of the characteristics of each subtype, we applied differentially expressed genes in CRG subtypes to establish a new risk stratification method. Clinical subgroup analysis, immunoinfiltration analysis, therapeutic reactivity prediction and other analytical methods suggest the potential clinical value of the established risk stratification method. As one of the selected targets, the effect of MS4A4A on the proliferation and invasion of COAD was confirmed by in vitro experiments, which partially verified the reliability of bioinformatics results. Our findings delineate CRGs potentially implicated in COAD pathogenesis and offer fresh insights into the influence of the coagulation process on tumorigenesis and progression.

2.
Nat Commun ; 15(1): 7806, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39242563

RESUMEN

Three-dimensional Spatial Transcriptomics has revolutionized our understanding of tissue regionalization, organogenesis, and development. However, existing approaches overlook either spatial information or experiment-induced distortions, leading to significant discrepancies between reconstruction results and in vivo cell locations, causing unreliable downstream analysis. To address these challenges, we propose ST-GEARS (Spatial Transcriptomics GEospatial profile recovery system through AnchoRS). By employing innovative Distributive Constraints into the Optimization scheme, ST-GEARS retrieves anchors with exceeding precision that connect closest spots across sections in vivo. Guided by the anchors, it first rigidly aligns sections, next solves and denoises Elastic Fields to counteract distortions. Through mathematically proved Bi-sectional Fields Application, it eventually recovers the original spatial profile. Studying ST-GEARS across number of sections, sectional distances and sequencing platforms, we observed its outstanding performance on tissue, cell, and gene levels. ST-GEARS provides precise and well-explainable 'gears' between in vivo situations and in vitro analysis, powerfully fueling potential of biological discoveries.


Asunto(s)
Transcriptoma , Animales , Imagenología Tridimensional/métodos , Ratones , Perfilación de la Expresión Génica/métodos , Humanos , Algoritmos
3.
J Vis Exp ; (210)2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39248504

RESUMEN

Mitochondrial isolation has been practiced for decades, following procedures established by pioneers in the fields of molecular biology and biochemistry to study metabolic impairments and disease. Consistent mitochondrial quality is necessary to properly investigate mitochondrial physiology and bioenergetics; however, many different published isolation methods are available for researchers. Although different experimental strategies require different isolation methods, the basic principles and procedures are similar. This protocol details a method capable of extracting well-coupled mitochondria from a variety of tissue sources, including small animals and cells. The steps outlined include organ dissection, mitochondrial purification, protein quantification, and various quality control checks. The primary quality control metric used to identify high-quality mitochondria is the respiratory control ratio (RCR). The RCR is the ratio of the respiratory rate during oxidative phosphorylation to the rate in the absence of ADP. Alternative metrics are discussed. While high RCR values relative to their tissue source are obtained using this protocol, several steps can be optimized to suit the individual needs of researchers. This procedure is robust and has consistently resulted in isolated mitochondria with above-average RCR values across animal models and tissue sources.


Asunto(s)
Mitocondrias Cardíacas , Animales , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/química , Ratones , Ratas , Miocardio/citología , Miocardio/metabolismo , Miocardio/química
4.
Artículo en Inglés | MEDLINE | ID: mdl-39222169

RESUMEN

Colon cancer ranked third among the most frequently diagnosed cancers worldwide. Amino acid metabolic reprogramming was related to the occurrence and development of colon cancer. We looked for the amino acid metabolism genes (AMGs) associated with amino acid metabolism from molecular signatures database as prognostic markers and constructed amino acid metabolism scoring model (AMS). According to AMS, the patients were divided into high AMS and low AMS groups, and the prognostic characteristics, molecular phenotypes, somatic cell mutation characteristics, immune cell infiltration characteristics, and immunotherapy effect of the two groups were systematically analyzed. Finally, the compounds targeting AMGs were also screened. We screen out 6 prognostic AMGs (P < 0.05) and construct an AMS model based on them. K-M curve indicated that OS in low AMS group was significantly higher than that in high group (P < 0.05), which were validated in multiple datasets. And different AMS groups had different molecular phenotypes, somatic cell mutation characteristics and immune cell infiltration characteristics. Low AMS group had a better effect for immunotherapy. In addition, we predicted potential therapeutic compounds that could bind to AMGs target proteins. AMS model can be used as a hierarchical tool to evaluate the prognosis, immune infiltration characteristics and immunotherapy response ability of colon cancer. And the compounds screened based on AMGs may become new anti-tumor drugs.

5.
J Med Virol ; 96(8): e29882, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39185672

RESUMEN

Establishing reliable noninvasive tools to precisely diagnose clinically significant liver fibrosis (SF, ≥F2) remains an unmet need. We aimed to build a combined radiomics-clinic (CoRC) model for triaging SF and explore the additive value of the CoRC model to transient elastography-based liver stiffness measurement (FibroScan, TE-LSM). This retrospective study recruited 595 patients with biopsy-proven liver fibrosis at two centers between January 2015 and December 2021. At Center 1, the patients before December 2018 were randomly split into training (276) and internal test (118) sets, the remaining were time-independent as a temporal test set (96). Another data set (105) from Center 2 was collected for external testing. Radiomics scores were built with selected features from Deep learning-based (ResUNet) automated whole liver segmentations on MRI (T2FS and delayed enhanced-T1WI). The CoRC model incorporated radiomics scores and relevant clinical variables with logistic regression, comparing routine approaches. Diagnostic performance was evaluated by the area under the receiver operating characteristic curve (AUC). The additive value of the CoRC model to TE-LSM was investigated, considering necroinflammation. The CoRC model achieved AUCs of 0.79 (0.70, 0.86), 0.82 (0.73, 0.89), and 0.81 (0.72-0.91), outperformed FIB-4, APRI (all p < 0.05) in the internal, temporal, and external test sets and maintained the discriminatory power in G0-1 subgroups (AUCs range, 0.85-0.86; all p < 0.05). The AUCs of joint CoRC-LSM model were 0.86 (0.79-0.94), and 0.81 (0.72-0.90) in the internal and temporal sets (p = 0.01). The CoRC model was useful for triaging SF, and may add value to TE-LSM.


Asunto(s)
Diagnóstico por Imagen de Elasticidad , Cirrosis Hepática , Hígado , Imagen por Resonancia Magnética , Humanos , Cirrosis Hepática/diagnóstico por imagen , Cirrosis Hepática/diagnóstico , Masculino , Femenino , Persona de Mediana Edad , Estudios Retrospectivos , Imagen por Resonancia Magnética/métodos , Adulto , Diagnóstico por Imagen de Elasticidad/métodos , Hígado/patología , Hígado/diagnóstico por imagen , Curva ROC , Aprendizaje Profundo , Anciano , Triaje/métodos
7.
Front Nutr ; 11: 1362258, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38803446

RESUMEN

Introduction: Managing postsurgical complications is crucial in optimizing the outcomes of bariatric surgery, for which preoperative nutritional assessment is essential. In this study, we aimed to evaluate and validate the efficacy of vitamin D levels as an immunonutritional biomarker for bariatric surgery prognosis. Methods: This matched retrospective cohort study included adult patients who underwent bariatric surgery at a tertiary medical center in China between July 2021 and June 2022. Patients with insufficient and sufficient 25(OH)D (< 30 ng/mL) were matched in a 1:1 ratio. Follow-up records of readmission at 3 months, 6 months, and 1 year were obtained to identify prognostic indicators. Results: A matched cohort of 452 patients with a mean age of 37.14 ± 9.25 years and involving 69.47% females was enrolled. Among them, 94.25 and 5.75% underwent sleeve gastrectomy and gastric bypass, respectively. Overall, 25 patients (5.54%) were readmitted during the 1-year follow-up. The prognostic nutritional index and controlling nutritional status scores calculated from inflammatory factors did not efficiently detect malnourishment. A low 25(OH)D level (3.58 [95% CI, 1.16-11.03]) and surgery season in summer or autumn (2.68 [95% CI, 1.05-6.83]) increased the risk of 1-year readmission in both the training and validation cohorts. The area under the receiver operating characteristic curve was 0.747 (95% CI, 0.640-0.855), with a positive clinical benefit in the decision curve analyses. The relationship between 25(OH)D and 6-month readmission was U-shaped. Conclusion: Serum 25(OH)D levels have prognostic significance in bariatric surgery readmission. Hence, preferable 25(OH)D levels are recommended for patients undergoing bariatric surgery.

8.
Eur Radiol ; 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750169

RESUMEN

OBJECTIVES: To evaluate signal enhancement ratio (SER) for tissue characterization and prognosis stratification in pancreatic adenocarcinoma (PDAC), with quantitative histopathological analysis (QHA) as the reference standard. METHODS: This retrospective study included 277 PDAC patients who underwent multi-phase contrast-enhanced (CE) MRI and whole-slide imaging (WSI) from three centers (2015-2021). SER is defined as (SIlt - SIpre)/(SIea - SIpre), where SIpre, SIea, and SIlt represent the signal intensity of the tumor in pre-contrast, early-, and late post-contrast images, respectively. Deep-learning algorithms were implemented to quantify the stroma, epithelium, and lumen of PDAC on WSIs. Correlation, regression, and Bland-Altman analyses were utilized to investigate the associations between SER and QHA. The prognostic significance of SER on overall survival (OS) was evaluated using Cox regression analysis and Kaplan-Meier curves. RESULTS: The internal dataset comprised 159 patients, which was further divided into training, validation, and internal test datasets (n = 60, 41, and 58, respectively). Sixty-five and 53 patients were included in two external test datasets. Excluding lumen, SER demonstrated significant correlations with stroma (r = 0.29-0.74, all p < 0.001) and epithelium (r = -0.23 to -0.71, all p < 0.001) across a wide post-injection time window (range, 25-300 s). Bland-Altman analysis revealed a small bias between SER and QHA for quantifying stroma/epithelium in individual training, validation (all within ± 2%), and three test datasets (all within ± 4%). Moreover, SER-predicted low stromal proportion was independently associated with worse OS (HR = 1.84 (1.17-2.91), p = 0.009) in training and validation datasets, which remained significant across three combined test datasets (HR = 1.73 (1.25-2.41), p = 0.001). CONCLUSION: SER of multi-phase CE-MRI allows for tissue characterization and prognosis stratification in PDAC. CLINICAL RELEVANCE STATEMENT: The signal enhancement ratio of multi-phase CE-MRI can serve as a novel imaging biomarker for characterizing tissue composition and holds the potential for improving patient stratification and therapy in PDAC. KEY POINTS: Imaging biomarkers are needed to better characterize tumor tissue in pancreatic adenocarcinoma. Signal enhancement ratio (SER)-predicted stromal/epithelial proportion showed good agreement with histopathology measurements across three distinct centers. Signal enhancement ratio (SER)-predicted stromal proportion was demonstrated to be an independent prognostic factor for OS in PDAC.

10.
Gigascience ; 13(1)2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38373745

RESUMEN

BACKGROUND: Cell clustering is a pivotal aspect of spatial transcriptomics (ST) data analysis as it forms the foundation for subsequent data mining. Recent advances in spatial domain identification have leveraged graph neural network (GNN) approaches in conjunction with spatial transcriptomics data. However, such GNN-based methods suffer from representation collapse, wherein all spatial spots are projected onto a singular representation. Consequently, the discriminative capability of individual representation feature is limited, leading to suboptimal clustering performance. RESULTS: To address this issue, we proposed SGAE, a novel framework for spatial domain identification, incorporating the power of the Siamese graph autoencoder. SGAE mitigates the information correlation at both sample and feature levels, thus improving the representation discrimination. We adapted this framework to ST analysis by constructing a graph based on both gene expression and spatial information. SGAE outperformed alternative methods by its effectiveness in capturing spatial patterns and generating high-quality clusters, as evaluated by the Adjusted Rand Index, Normalized Mutual Information, and Fowlkes-Mallows Index. Moreover, the clustering results derived from SGAE can be further utilized in the identification of 3-dimensional (3D) Drosophila embryonic structure with enhanced accuracy. CONCLUSIONS: Benchmarking results from various ST datasets generated by diverse platforms demonstrate compelling evidence for the effectiveness of SGAE against other ST clustering methods. Specifically, SGAE exhibits potential for extension and application on multislice 3D reconstruction and tissue structure investigation. The source code and a collection of spatial clustering results can be accessed at https://github.com/STOmics/SGAE/.


Asunto(s)
Benchmarking , Perfilación de la Expresión Génica , Animales , Análisis por Conglomerados , Minería de Datos , Drosophila/genética
11.
J Magn Reson Imaging ; 59(3): 767-783, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37647155

RESUMEN

Hepatocellular carcinoma (HCC) is the fifth most common malignancy and the third leading cause of cancer-related death worldwide. HCC exhibits strong inter-tumor heterogeneity, with different biological characteristics closely associated with prognosis. In addition, patients with HCC often distribute at different stages and require diverse treatment options at each stage. Due to the variability in tumor sensitivity to different therapies, determining the optimal treatment approach can be challenging for clinicians prior to treatment. Artificial intelligence (AI) technology, including radiomics and deep learning approaches, has emerged as a unique opportunity to improve the spectrum of HCC clinical care by predicting biological characteristics and prognosis in the medical imaging field. The radiomics approach utilizes handcrafted features derived from specific mathematical formulas to construct various machine-learning models for medical applications. In terms of the deep learning approach, convolutional neural network models are developed to achieve high classification performance based on automatic feature extraction from images. Magnetic resonance imaging offers the advantage of superior tissue resolution and functional information. This comprehensive evaluation plays a vital role in the accurate assessment and effective treatment planning for HCC patients. Recent studies have applied radiomics and deep learning approaches to develop AI-enabled models to improve accuracy in predicting biological characteristics and prognosis, such as microvascular invasion and tumor recurrence. Although AI-enabled models have demonstrated promising potential in HCC with biological characteristics and prognosis prediction with high performance, one of the biggest challenges, interpretability, has hindered their implementation in clinical practice. In the future, continued research is needed to improve the interpretability of AI-enabled models, including aspects such as domain knowledge, novel algorithms, and multi-dimension data sources. Overcoming these challenges would allow AI-enabled models to significantly impact the care provided to HCC patients, ultimately leading to their deployment for clinical use. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY: Stage 2.


Asunto(s)
Carcinoma Hepatocelular , Aprendizaje Profundo , Neoplasias Hepáticas , Humanos , Radiómica , Inteligencia Artificial , Pronóstico , Imagen por Resonancia Magnética
12.
Int J Surg ; 110(2): 740-749, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38085810

RESUMEN

BACKGROUND: Undetectable occult liver metastases block the long-term survival of pancreatic ductal adenocarcinoma (PDAC). This study aimed to develop a radiomics-based model to predict occult liver metastases and assess its prognostic capacity for survival. MATERIALS AND METHODS: Patients who underwent surgical resection and were pathologically proven with PDAC were recruited retrospectively from five tertiary hospitals between January 2015 and December 2020. Radiomics features were extracted from tumors, and the radiomics-based model was developed in the training cohort using LASSO-logistic regression. The model's performance was assessed in the internal and external validation cohorts using the area under the receiver operating curve (AUC). Subsequently, the association of the model's risk stratification with progression-free survival (PFS) and overall survival (OS) was then statistically examined using Cox regression analysis and the log-rank test. RESULTS: A total of 438 patients [mean (SD) age, 62.0 (10.0) years; 255 (58.2%) male] were divided into the training cohort ( n =235), internal validation cohort ( n =100), and external validation cohort ( n =103). The radiomics-based model yielded an AUC of 0.73 (95% CI: 0.66-0.80), 0.72 (95% CI: 0.62-0.80), and 0.71 (95% CI: 0.61-0.80) in the training, internal validation, and external validation cohorts, respectively, which were higher than the preoperative clinical model. The model's risk stratification was an independent predictor of PFS (all P <0.05) and OS (all P <0.05). Furthermore, patients in the high-risk group stratified by the model consistently had a significantly shorter PFS and OS at each TNM stage (all P <0.05). CONCLUSION: The proposed radiomics-based model provided a promising tool to predict occult liver metastases and had a great significance in prognosis.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Hepáticas , Neoplasias Pancreáticas , Humanos , Masculino , Persona de Mediana Edad , Femenino , Radiómica , Estudios Retrospectivos , Neoplasias Pancreáticas/diagnóstico por imagen , Neoplasias Pancreáticas/cirugía , Carcinoma Ductal Pancreático/diagnóstico por imagen , Carcinoma Ductal Pancreático/cirugía , Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Hepáticas/cirugía
13.
Abdom Radiol (NY) ; 49(2): 611-624, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38051358

RESUMEN

PURPOSE: Microvascular invasion (MVI) is a common complication of hepatocellular carcinoma (HCC) surgery, which is an important predictor of reduced surgical prognosis. This study aimed to develop a fully automated diagnostic model to predict pre-surgical MVI based on four-phase dynamic CT images. METHODS: A total of 140 patients with HCC from two centers were retrospectively included (training set, n = 98; testing set, n = 42). All CT phases were aligned to the portal venous phase, and were then used to train a deep-learning model for liver tumor segmentation. Radiomics features were extracted from the tumor areas of original CT phases and pairwise subtraction images, as well as peritumoral features. Lastly, linear discriminant analysis (LDA) models were trained based on clinical features, radiomics features, and hybrid features, respectively. Models were evaluated by area under curve (AUC), accuracy, sensitivity, specificity, positive and negative predictive values (PPV and NPV). RESULTS: Overall, 86 and 54 patients with MVI- (age, 55.92 ± 9.62 years; 68 men) and MVI+ (age, 53.59 ± 11.47 years; 43 men) were included. Average dice coefficients of liver tumor segmentation were 0.89 and 0.82 in training and testing sets, respectively. The model based on radiomics (AUC = 0.865, 95% CI: 0.725-0.951) showed slightly better performance than that based on clinical features (AUC = 0.841, 95% CI: 0.696-0.936). The classification model based on hybrid features achieved better performance in both training (AUC = 0.955, 95% CI: 0.893-0.987) and testing sets (AUC = 0.913, 95% CI: 0.785-0.978), compared with models based on clinical and radiomics features (p-value < 0.05). Moreover, the hybrid model also provided the best accuracy (0.857), sensitivity (0.875), and NPV (0.917). CONCLUSION: The classification model based on multimodal intra- and peri-tumoral radiomics features can well predict HCC patients with MVI.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Masculino , Humanos , Persona de Mediana Edad , Anciano , Adulto , Carcinoma Hepatocelular/diagnóstico por imagen , Carcinoma Hepatocelular/cirugía , Radiómica , Estudios Retrospectivos , Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Hepáticas/cirugía , Tomografía Computarizada por Rayos X
15.
Radiology ; 309(1): e231007, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37874242

RESUMEN

Background A better understanding of the association between liver MRI proton density fat fraction (PDFF) and liver diseases might support the clinical implementation of MRI PDFF. Purpose To quantify the genetically predicted causal effect of liver MRI PDFF on liver disease risk. Materials and Methods This population-based prospective observational study used summary-level data mainly from the UK Biobank and FinnGen. Mendelian randomization analysis was conducted using the inverse variance-weighted method to explore the causal association between genetically predicted liver MRI PDFF and liver disease risk with Bonferroni correction. The individual-level data were downloaded between August and December 2020 from the UK Biobank. Logistic regression analysis was performed to validate the association between liver MRI PDFF polygenic risk score and liver disease risk. Mediation analyses were performed using multivariable mendelian randomization. Results Summary-level and individual-level data were obtained from 32 858 participants and 378 436 participants (mean age, 57 years ± 8 [SD]; 203 108 female participants), respectively. Genetically predicted high liver MRI PDFF was associated with increased risks of malignant liver neoplasm (odds ratio [OR], 4.5; P < .001), alcoholic liver disease (OR, 1.9; P < .001), fibrosis and cirrhosis of the liver (OR, 3.0; P < .004), fibrosis of the liver (OR, 3.6; P = .002), cirrhosis of the liver (OR, 3.8; P < .001), nonalcoholic steatohepatitis (OR, 7.7; P < .001), and nonalcoholic fatty liver disease (NAFLD) (OR, 4.4; P < .001). Individual-level evidence supported these associations after grouping participants based on liver MRI PDFF polygenic risk score (all P < .004). The mediation analysis indicated that genetically predicted high-density lipoprotein cholesterol, type 2 diabetes mellitus, and waist-to-hip ratio (mediation effects, 25.1%-46.3%) were related to the occurrence of fibrosis and cirrhosis of the liver, cirrhosis of the liver, and NAFLD at liver MRI PDFF (all P < .05). Conclusion This study provided evidence of the association between genetically predicted liver MRI PDFF and liver health. © RSNA, 2023 Supplemental material is available for this article. See also the editorials by Reeder and Starekova and Monsell in this issue.


Asunto(s)
Diabetes Mellitus Tipo 2 , Enfermedad del Hígado Graso no Alcohólico , Femenino , Humanos , Persona de Mediana Edad , Diabetes Mellitus Tipo 2/patología , Hígado/diagnóstico por imagen , Hígado/patología , Cirrosis Hepática/patología , Imagen por Resonancia Magnética/métodos , Enfermedad del Hígado Graso no Alcohólico/diagnóstico por imagen , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/patología , Masculino
16.
JHEP Rep ; 5(9): 100806, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37575884

RESUMEN

Background & Aims: Distinct vascular patterns, including microvascular invasion (MVI) and vessels encapsulating tumour clusters (VETC), are associated with poor outcomes of hepatocellular carcinoma (HCC). Imaging surrogates of these vascular patterns potentially help to predict post-resection recurrence. Herein, a prognostic model integrating imaging-based surrogates of these distinct vascular patterns was developed to predict postoperative recurrence-free survival (RFS) in patients with HCC. Methods: Clinico-radiological data of 1,285 patients with HCC from China undergoing surgical resection were retrospectively enrolled from seven medical centres between 2014 and 2020. A prognostic model using clinical data and imaging-based surrogates of MVI and VETC patterns was developed (n = 297) and externally validated (n = 373) to predict RFS. The surrogates (i.e. MVI and VETC scores) were individually built from preoperative computed tomography using two independent cohorts (n = 360 and 255). Whether the model's stratification was associated with postoperative recurrence following anatomic resection was also evaluated. Results: The MVI and VETC scores demonstrated effective performance in their respective training and validation cohorts (AUC: 0.851-0.883 for MVI and 0.834-0.844 for VETC). The prognostic model incorporating serum alpha-foetoprotein, tumour multiplicity, MVI score, and VETC score achieved a C-index of 0.748-0.764 for the developing and external validation cohorts and generated three prognostically distinct strata. For patients at model-predicted medium risk, anatomic resection was associated with improved RFS (p <0.05). By contrast, anatomic resection had no impact on RFS in patients at model-predicted low or high risk (both p >0.05). Conclusions: The proposed model integrating imaging-based surrogates of distinct vascular patterns enabled accurate prediction for RFS. It can potentially be used to identify HCC surgical candidates who may benefit from anatomic resection. Impact and implications: MVI and VETC are distinct vascular patterns of HCC associated with aggressive biological behaviour and poor outcomes. Our multicentre study provided a model incorporating imaging-based surrogates of these patterns for preoperatively predicting RFS. The proposed model, which uses imaging detection to estimate the risk of MVI and VETC, offers an opportunity to help shed light on the association between tumour aggressiveness and prognosis and to support the selection of the appropriate type of surgical resection.

17.
Eur Radiol ; 33(12): 8965-8973, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37452878

RESUMEN

OBJECTIVES: To develop and validate a machine learning model based on contrast-enhanced CT to predict the risk of occurrence of the composite clinical endpoint (hospital-based intervention or death) in cirrhotic patients with acute variceal bleeding (AVB). METHODS: This retrospective study enrolled 330 cirrhotic patients with AVB between January 2017 and December 2020 from three clinical centers. Contrast-enhanced CT and clinical data were collected. Centers A and B were divided 7:3 into a training set and an internal test set, and center C served as a separate external test set. A well-trained deep learning model was applied to segment the liver and spleen. Then, we extracted 106 original features of the liver and spleen separately based on the Image Biomarker Standardization Initiative (IBSI). We constructed the Liver-Spleen (LS) model based on the selected radiomics features. The performance of LS model was evaluated by receiver operating characteristics and calibration curves. The clinical utility of models was analyzed using decision curve analyses (DCA). RESULTS: The LS model demonstrated the best diagnostic performance in predicting the composite clinical endpoint of AVB in patients with cirrhosis, with an AUC of 0.782 (95% CI 0.650-0.882) and 0.789 (95% CI 0.674-0.878) in the internal test and external test groups, respectively. Calibration curves and DCA indicated the LS model had better performance than traditional clinical scores. CONCLUSION: A novel machine learning model outperforms previously known clinical risk scores in assessing the prognosis of cirrhotic patients with AVB CLINICAL RELEVANCE STATEMENT: The Liver-Spleen model based on contrast-enhanced CT has proven to be a promising tool to predict the prognosis of cirrhotic patients with acute variceal bleeding, which can facilitate decision-making and personalized therapy in clinical practice. KEY POINTS: • The Liver-Spleen machine learning model (LS model) showed good performance in assessing the clinical composite endpoint of cirrhotic patients with AVB (AUC ≥ 0.782, sensitivity ≥ 80%). • The LS model outperformed the clinical scores (AUC ≤ 0.730, sensitivity ≤ 70%) in both internal and external test cohorts.


Asunto(s)
Várices Esofágicas y Gástricas , Humanos , Várices Esofágicas y Gástricas/diagnóstico por imagen , Estudios Retrospectivos , Hemorragia Gastrointestinal/terapia , Cirrosis Hepática/complicaciones , Cirrosis Hepática/diagnóstico , Factores de Riesgo , Pronóstico , Aprendizaje Automático
18.
Radiology ; 307(4): e222729, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37097141

RESUMEN

Background Prediction of microvascular invasion (MVI) may help determine treatment strategies for hepatocellular carcinoma (HCC). Purpose To develop a radiomics approach for predicting MVI status based on preoperative multiphase CT images and to identify MVI-associated differentially expressed genes. Materials and Methods Patients with pathologically proven HCC from May 2012 to September 2020 were retrospectively included from four medical centers. Radiomics features were extracted from tumors and peritumor regions on preoperative registration or subtraction CT images. In the training set, these features were used to build five radiomics models via logistic regression after feature reduction. The models were tested using internal and external test sets against a pathologic reference standard to calculate area under the receiver operating characteristic curve (AUC). The optimal AUC radiomics model and clinical-radiologic characteristics were combined to build the hybrid model. The log-rank test was used in the outcome cohort (Kunming center) to analyze early recurrence-free survival and overall survival based on high versus low model-derived score. RNA sequencing data from The Cancer Image Archive were used for gene expression analysis. Results A total of 773 patients (median age, 59 years; IQR, 49-64 years; 633 men) were divided into the training set (n = 334), internal test set (n = 142), external test set (n = 141), outcome cohort (n = 121), and RNA sequencing analysis set (n = 35). The AUCs from the radiomics and hybrid models, respectively, were 0.76 and 0.86 for the internal test set and 0.72 and 0.84 for the external test set. Early recurrence-free survival (P < .01) and overall survival (P < .007) can be categorized using the hybrid model. Differentially expressed genes in patients with findings positive for MVI were involved in glucose metabolism. Conclusion The hybrid model showed the best performance in prediction of MVI. © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Summers in this issue.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Masculino , Humanos , Persona de Mediana Edad , Carcinoma Hepatocelular/diagnóstico por imagen , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Hepáticas/genética , Estudios Retrospectivos , Invasividad Neoplásica/patología , Tomografía Computarizada por Rayos X/métodos
19.
Biomed Pharmacother ; 162: 114622, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37003035

RESUMEN

Atopic dermatitis (AD) is a common, chronic, and recurring inflammatory skin disease. Physalis alkekengi L. var. franchetii (Mast) Makino (PAF), a traditional Chinese medicine, is primarily used for the clinical treatment of AD. In this study, a 2,4-dinitrochlorobenzene-induced AD BALB/c mouse model was established, and a comprehensive pharmacological method was used to determine the pharmacological effects and molecular mechanisms of PAF in the treatment of AD. The results indicated that both PAF gel (PAFG) and PAFG+MF (mometasone furoate) attenuated the severity of AD and reduced the infiltration of eosinophils and mast cells in the skin. Serum metabolomics showed that PAFG combined with MF administration exerted a synergistic effect by remodeling metabolic disorders in mice. In addition, PAFG also alleviated the side effects of thymic atrophy and growth inhibition induced by MF. Network pharmacology predicted that the active ingredients of PAF were flavonoids and exerted therapeutic effects through anti-inflammatory effects. Finally, immunohistochemical analysis confirmed that PAFG inhibited the inflammatory response through the ERß/HIF-1α/VEGF signaling pathway. Our results revealed that PAF can be used as a natural-source drug with good development prospects for the clinical treatment of AD.


Asunto(s)
Dermatitis Atópica , Physalis , Ratones , Animales , Physalis/química , Extractos Vegetales/farmacología , Flavonoides , Hormonas
20.
Ann Transl Med ; 11(1): 17, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36760261

RESUMEN

Background: Drug-drug interactions (DDIs) are factors of adverse drug reactions and are more common in elderly patients. Identifying potential DDIs can prevent the related risks. Fewer studies of potential DDIs in prescribing for elderly patients in outpatient clinics. This study aimed to investigate the prevalence and associated factors with potential DDIs and potentially clinically significant DDIs (csDDIs) among elderly outpatients based on 3 DDIs databases. Methods: A cross-sectional study was carried out on outpatients (≥65 years old) of a tertiary care hospital in China between January and March 2022. Patients' prescriptions, including at least 1 systemic drug, were consecutively collected. The potential DDIs were identified by Lexicomp®, Micromedex®, and DDInter. Patient-related clinical parameter recorded at the prescriptions and DDIs with higher risk rating was analyzed. Variables showing association in univariate analysis (P<0.2) were included in logistic regression analysis. Weighted kappa analysis was used to analyze the consistencies of different databases. Results: A total of 19,991 elderly outpatients were involved in the study, among whom 21,527 drug combinations including 486 drugs occurred. Lexicomp®, Micromedex®, and DDInter respectively identified 32.22%, 32.93%, and 22.62% of patients have at least one potential DDIs, meanwhile, 9.16%, 14.53%, and 4.56% of patients have at least one potential csDDIs. Under any evaluation criteria, polypharmacy and neurology visits were risk factors for csDDIs. Lexicomp® has the highest coverage rate (87.86%) for drugs. Micromedex® identified the most csDDIs (740 drug combinations). Drugs used in diabetes and psycholeptics were frequently found in the csDDIs of 2 commercial databases. The consistency between Lexicomp® and Micromedex® was moderate (weighted kappa 0.473). DDInter had fair consistencies with the other databases. Conclusions: This study showed the prevalence of potential DDIs is high in elderly outpatients and potential csDDIs were prevalent. Considering the relative risk, pre-warning of potential DDIs before outpatient prescribing is necessary. As the consistencies among identification criteria are not good, more research is needed to focus on actual adverse outcomes to promote accurate prevention of csDDIs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...