Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Food Chem ; 450: 139349, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38631205

RESUMEN

Kale is a functional food with anti-cancer, antioxidant, and anemia prevention properties. The harmful effects of the emerging pollutant microplastic (MP) on plants have been widely studied, but there is limited research how to mitigate MP damage on plants. Numerous studies have shown that Se is involved in regulating plant resistance to abiotic stresses. The paper investigated impact of MP and Se on kale growth, photosynthesis, reactive oxygen species (ROS) metabolism, phytochemicals, and endogenous hormones. Results revealed that MP triggered a ROS burst, which led to breakdown of antioxidant system in kale, and had significant toxic effects on photosynthetic system, biomass, and accumulation of secondary metabolites, as well as a significant decrease in IAA and a significant increase in GA. Under MP supply, Se mitigated the adverse effects of MP on kale by increasing photosynthetic pigment content, stimulating function of antioxidant system, enhancing secondary metabolite synthesis, and modulating hormonal networks.

2.
Sci Total Environ ; 932: 172555, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38677420

RESUMEN

Microplastics (MPs) pose a significant threat to the function of agro-ecosystems. At present, research on MPs has mainly focused on the effects of different concentrations or types of MPs on a crop, while ignoring other environmental factors. In agricultural production, the application of nitrogen (N) fertilizer is an important means to maintain the high yield of crops. The effects of MPs and N on growth parameters, photosynthetic system, active oxygen metabolism, nutrient content, and ascorbate-glutathione (AsA-GSH) cycle of maize and wheat were studied in order to explicit whether N addition could effectively alleviate the effects of MPs on maize and wheat. The results showed that MPs inhibited the plant height of both maize and wheat, and MPs effects on physiological traits of maize were more severe than those of wheat, reflecting in reactive oxygen metabolism and restriction of photosynthetic capacity. Under the condition of N supply, AsA-GSH cycle of two plants has different response strategies to MPs: Maize promoted enzyme activity and co-accumulation of AsA and GSH, while wheat tended to consume AsA and accumulate GSH. N application induced slight oxidative stress on maize, which was manifested as an increase in hydrogen peroxide and malonaldehyde contents, and activities of polyphenol oxidase and peroxidase. The antioxidant capacity of maize treated with the combination of MPs + N was better than that treated with N or MPs alone. N could effectively alleviate the adverse effects of MPs on wheat by improving the antioxidant capacity.


Asunto(s)
Microplásticos , Nitrógeno , Oxidación-Reducción , Fotosíntesis , Triticum , Zea mays , Zea mays/efectos de los fármacos , Zea mays/crecimiento & desarrollo , Zea mays/fisiología , Triticum/crecimiento & desarrollo , Triticum/fisiología , Triticum/efectos de los fármacos , Triticum/metabolismo , Fotosíntesis/efectos de los fármacos , Nitrógeno/metabolismo , Microplásticos/toxicidad , Glutatión/metabolismo , Fertilizantes , Homeostasis , Contaminantes del Suelo/toxicidad , Ácido Ascórbico/metabolismo , Estrés Oxidativo
3.
J Hazard Mater ; 470: 134116, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38547753

RESUMEN

Microplastic (MP), as a new pollutant, not only affects the growth and development of plants but also may affect the secondary metabolites of plants. The anti-tumor role of Pinellia ternata is related to secondary metabolites. The role of brassinolide (BR) in regulating plant resistance is currently one of the research hotspots. The paper mainly explores the regulation of BR on growth and physiology of Pinellia ternata under MP stress. The experimental design includes two levels of MP (0, 1%) and two levels of BR (0, 0.1 mg/L). MP led to a marked reduction in plant height (15.0%), Fv/Fm (3.2%), SOD and APX activity (15.0%, 5.1%), whereas induced an evident raise in the rate of O2·- production (29.6%) and GSH content (4.4%), as well as flavonoids (6.8%), alkaloids (75%), and ß-sitosterol (26.5%) contents. Under MP addition, BR supply significantly increased plant height (15.7%), aboveground and underground biomass (16.1%, 10.3%), carotenoid and GSH content (11.8%, 4.2%), Fv/Fm (2.9%), and activities of SOD, GR, and MDHAR (32.2%, 21.08%, 20.9%). These results indicate that MP suppresses the growth of P. ternata, although it promotes secondary metabolism. BR can alleviate the inhibitory effect of MP on growth by improving photosynthesis, redox homeostasis, and the AsA-GSH cycle.


Asunto(s)
Brasinoesteroides , Glutatión , Homeostasis , Oxidación-Reducción , Fotosíntesis , Pinellia , Esteroides Heterocíclicos , Fotosíntesis/efectos de los fármacos , Homeostasis/efectos de los fármacos , Glutatión/metabolismo , Brasinoesteroides/metabolismo , Pinellia/metabolismo , Pinellia/efectos de los fármacos , Pinellia/crecimiento & desarrollo , Esteroides Heterocíclicos/farmacología , Plásticos/metabolismo , Sitoesteroles/metabolismo , Flavonoides/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA