Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 176
Filtrar
1.
Res Vet Sci ; 174: 105291, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38729095

RESUMEN

Avian pathogenic Escherichia coli (APEC) is a widespread bacterium that causes significant economic losses to the poultry industry. APEC biofilm formation may result in chronic, persistent, and recurrent infections in clinics, making treatment challenging. Baicalein is a natural product that exhibits antimicrobial and antibiofilm activities. This study investigates the inhibitory effect of baicalein on APEC biofilm formation at different stages. The minimum inhibitory concentration (MIC) of baicalein on APEC was determined, and the growth curve of APEC biofilm formation was determined. The effects of baicalein on APEC biofilm adhesion, accumulation, and maturation were observed using optical microscopy, confocal laser scanning microscopy, and scanning electron microscopy. The biofilm inhibition rate of baicalein was calculated at different stages. The MIC of baicalein against APEC was 256 µg/mL. The process of APEC biofilm maturation takes approximately 48 h after incubation, with initial adhesion completed at 12 h, and cell accumulation finished at 24 h. Baicalein had a significant inhibitory effect on APEC biofilm formation at concentrations above 1 µg/mL (p < 0.01). Notably, baicalein had the highest rate of biofilm formation inhibition when added at the adhesion stage. Therefore, it can be concluded that baicalein is a potent inhibitor of APEC biofilm formation in vitro and acts, primarily by inhibiting cell adhesion. These findings suggests that baicalein has a potential application for inhibiting APEC biofilm formation and provides a novel approach for the prevention and control APEC-related diseases.

2.
Innovation (Camb) ; 5(3): 100626, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38699777

RESUMEN

Pancreatic adenocarcinoma (PDAC) is one of the most deadly cancers, characterized by extremely limited therapeutic options and a poor prognosis, as it is often diagnosed during late disease stages. Innovative and selective treatments are urgently needed, since current therapies have limited efficacy and significant side effects. Through proteomics analysis of extracellular vesicles, we discovered an imbalanced distribution of amino acids secreted by PDAC tumor cells. Our findings revealed that PDAC cells preferentially excrete proteins with certain preferential amino acids, including isoleucine and histidine, via extracellular vesicles. These amino acids are associated with disease progression and can be targeted to elicit selective toxicity to PDAC tumor cells. Both in vitro and in vivo experiments demonstrated that supplementation with these specific amino acids effectively eradicated PDAC cells. Mechanistically, we also identified XRN1 as a potential target for these amino acids. The high selectivity of this treatment method allows for specific targeting of tumor metabolism with very low toxicity to normal tissues. Furthermore, we found this treatment approach is easy-to-administer and with sustained tumor-killing effects. Together, our findings reveal that exocytosed amino acids may serve as therapeutic targets for designing treatments of intractable PDAC and potentially offer alternative treatments for other types of cancers.

3.
Toxicol Appl Pharmacol ; 486: 116946, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38679241

RESUMEN

The pathogenesis of attention-deficit/hyperactivity disorder (ADHD) has not been fully elucidated. Gestational hypertension could double the probability of ADHD in the offspring, while the initial bacterial communication between the mother and offspring has been associated with psychiatric disorders. Thus, we hypothesize that antihypertensive treatment during pregnancy may abate the impairments in neurodevelopment of the offspring. To test this hypothesis, we chose Captopril and Labetalol, to apply to pregnant spontaneously hypertensive rat (SHR) dams and examined the outcomes in the male offspring. Our data demonstrated that maternal treatment with Captopril and Labetalol had long-lasting changes in gut microbiota and behavioral alterations, including decreased hyperactivity and increased curiosity, spatial learning and memory in the male offspring. Increased diversity and composition were identified, and some ADHD related bacteria were found to have the same change in the gut microbiota of both the dam and offspring after the treatments. LC-MS/MS and immunohistochemistry assays suggested elevated expression of brain derived neurotrophic factor (BDNF) and dopamine in the prefrontal cortex and striatum of offspring exposed to Captopril/ Labetalol, which may account for the improvement of the offspring's psychiatric functions. Therefore, our results support the beneficial long-term effects of the intervention of gestational hypertension in the prevention of ADHD.


Asunto(s)
Antihipertensivos , Trastorno por Déficit de Atención con Hiperactividad , Conducta Animal , Captopril , Microbioma Gastrointestinal , Efectos Tardíos de la Exposición Prenatal , Ratas Endogámicas SHR , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Embarazo , Trastorno por Déficit de Atención con Hiperactividad/tratamiento farmacológico , Trastorno por Déficit de Atención con Hiperactividad/inducido químicamente , Femenino , Antihipertensivos/farmacología , Captopril/farmacología , Masculino , Ratas , Conducta Animal/efectos de los fármacos , Labetalol/farmacología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Hipertensión Inducida en el Embarazo/inducido químicamente , Dopamina/metabolismo
4.
Nanoscale ; 16(13): 6495-6506, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38465951

RESUMEN

Conjugated polymers (CPs) are solution-processible for various electronic applications, where solution aggregation and dynamics could impact the morphology in the solid state. Various solvents and solvent mixtures have been used to dissolve and process CPs, but few studies have quantified the effect of solvent quality on the solution behavior of CPs. Herein, we performed static light scattering and small-angle X-ray scattering combined with molecular dynamics (MD) simulation to investigate CP solution behaviors with solvents of varying quality, including poly(3-alkylthiophene) (P3ATs) with various sidechain lengths from -C4H9 to -C12H25, poly[bis(3-dodecyl-2-thienyl)-2,2'-dithiophene-5,5'-diyl] (PQT-12) and poly[2,5-bis(3-dodecylthiophen-2-yl)thieno[3,2-b]thiophene] (PBTTT-12). We found that chlorobenzene is a better solvent than toluene for various CPs, which was evident from the positive second virial coefficient A2 ranging from 0.3 to 4.7 × 10-3 cm3 mol g-2 towards P3ATs. For P3ATs in non-polar solvents, longer sidechains promote more positive A2, indicating a better polymer-solvent interaction, wherein A2 for toluene increases from -5.9 to 1.4 × 10-3 cm3 mol g-2, and in CB, A2 ranges from 1.0 to 4.7 × 10-3 cm3 mol g-2 when sidechain length increases from -C6H13 to -C12H25. Moreover, PQT-12 and PBTTT-12 have strong aggregation tendencies in all solutions, with an apparent positive A2 (∼0.5 × 10-3 cm3 mol g-2) due to multi-chain aggregates and peculiar chain folding. These solvent-dependent aggregation behaviors can be well correlated to spectroscopy measurement results. Our coarse-grained MD simulation results further suggested that CPs with long, dense, and branched sidechains can achieve enhanced polymer-solvent interaction, and thus enable overall better solution dispersion. This work provides quantitative insights into the solution behavior of conjugated polymers that can guide both the design and process of CPs toward next-generation organic electronics.

5.
Carcinogenesis ; 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38366384

RESUMEN

In recent decades, considerable evidence has emerged indicating the involvement of tRNA-derived fragments (tRFs) in cancer progression through various mechanisms. However, the biological effects and mechanisms of tRFs in lung adenocarcinoma (LUAD) remain unclear. In this study, we screen out tRF-29-79, a 5'-tRF derived from tRNAGlyGCC, through profiling the tRF expressions in three pairs of LUAD tissues. We show that tRF-29-79 is down-regulated in LUAD and down-regulation of tRF-29-79 is associated with poorer prognosis. In vivo and in vitro assay reveal that tRF-29-79 inhibits proliferation, migration, and invasion of LUAD cells. Mechanistically, we discovered that tRF-29-79 interacts with the RNA-binding protein PTBP1 and facilitates the transportation of PTBP1 from nucleus to cytoplasm, which regulates alternative splicing in the 3' untranslated region (UTR) of SLC1A5 pre-mRNA. Given that SLC1A5 is a core transporter of glutamine, we proved that tRF-29-79 mediate glutamine metabolism of LUAD through affecting the stability of SLC1A5 mRNA, thus exerts its anticancer function. In summary, our findings uncover the novel mechanism that tRF-29-79 participates in glutamine metabolism through interacting with PTBP1 and regulating alternative splicing in the 3' UTR of SLC1A5 pre-mRNA.

6.
Medicine (Baltimore) ; 103(8): e36982, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38394542

RESUMEN

Golimumab and etanercept both exhibit good efficacy in treating rheumatic diseases, while the patient self-reported measurement of treatment improvement and injection experience lacks sufficient evidence. Hence, this study aimed to compare the satisfaction with disease improvement and injection experience and the level of injection site reactions (ISRs) between golimumab-treated and etanercept-treated patients with rheumatic diseases. A total of 312 patients with rheumatic diseases were serially enrolled. Among them, 158 patients received golimumab (golimumab group); the other 154 patients were treated with etanercept (etanercept group) according to the actual disease status, physician advice, and patient willingness. Satisfaction with disease improvement was assessed using the 7-point Likert scale; satisfaction with injection experience and level of ISRs were both determined by the 5-point Likert scale. Satisfaction degrees with global injection experience (P = .025), injection device (P = .008), injection frequency (P = .010), and injection convenience (P = .003) were superior in the golimumab group to the etanercept group, while satisfaction degrees with global disease improvement, symptom relief, and speed of action did not vary (all P > .050) between the 2 groups. Discomfort (P = .005), swelling (P < .001), pain (P = .028), and burning (P = .035) levels were lower in the golimumab group than in the etanercept group. In addition, among 56 patients with a history of tumor necrosis factor inhibitor treatment before golimumab, 40 (71.4%) patients preferred golimumab to other tumor necrosis factor inhibitor. After switching to golimumab treatment, the level of ISRs in most patients was reduced or comparable. Golimumab achieves a satisfying injection experience and relieves the level of ISRs over etanercept in patients with rheumatic diseases.


Asunto(s)
Anticuerpos Monoclonales , Antirreumáticos , Artritis Reumatoide , Enfermedades Reumáticas , Humanos , Etanercept/uso terapéutico , Adalimumab/uso terapéutico , Estudios de Cohortes , Inhibidores del Factor de Necrosis Tumoral/uso terapéutico , Autoinforme , Artritis Reumatoide/tratamiento farmacológico , Satisfacción del Paciente , Enfermedades Reumáticas/tratamiento farmacológico , Factor de Necrosis Tumoral alfa/uso terapéutico , Resultado del Tratamiento
7.
Front Oncol ; 14: 1323226, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38420013

RESUMEN

Purpose: This study aimed to develop and validate a clinicopathological model to predict pathological complete response (pCR) to neoadjuvant chemotherapy (NAC) in breast cancer patients and identify key prognostic factors. Methods: This retrospective study analyzed data from 279 breast cancer patients who received NAC at Zhejiang Provincial People's Hospital from 2011 to 2021. Additionally, an external validation dataset, comprising 50 patients from Lanxi People's Hospital and Second Affiliated Hospital, Zhejiang University School of Medicine from 2022 to 2023 was utilized for model verification. A multivariate logistic regression model was established incorporating clinical, ultrasound features, circulating tumor cells (CTCs), and pathology variables at baseline and post-NAC. Model performance for predicting pCR was evaluated. Prognostic factors were identified using survival analysis. Results: In the 279 patients enrolled, a pathologic complete response (pCR) rate of 27.96% (78 out of 279) was achieved. The predictive model incorporated independent predictors such as stromal tumor-infiltrating lymphocyte (sTIL) levels, Ki-67 expression, molecular subtype, and ultrasound echo features. The model demonstrated strong predictive accuracy for pCR (C-statistics/AUC 0.874), especially in human epidermal growth factor receptor 2 (HER2)-enriched (C-statistics/AUC 0.878) and triple-negative (C-statistics/AUC 0.870) subtypes, and the model performed well in external validation data set (C-statistics/AUC 0.836). Incorporating circulating tumor cell (CTC) changes post-NAC and tumor size changes further improved predictive performance (C-statistics/AUC 0.945) in the CTC detection subgroup. Key prognostic factors included tumor size >5cm, lymph node metastasis, sTIL levels, estrogen receptor (ER) status and pCR. Despite varied pCR rates, overall prognosis after standard systemic therapy was consistent across molecular subtypes. Conclusion: The developed predictive model showcases robust performance in forecasting pCR in NAC-treated breast cancer patients, marking a step toward more personalized therapeutic strategies in breast cancer.

8.
Cancer Lett ; 585: 216656, 2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38266804

RESUMEN

Hormone receptor-positive breast cancer (HR+ BC) is known to be relatively insensitive to chemotherapy, and since chemotherapy has remained the major neoadjuvant therapy for HR+ BC, the undetermined mechanism of chemoresistance and how chemotherapy reshapes the immune microenvironment need to be explored by high-throughput technology. By using single-cell RNA sequencing and multiplexed immunofluorescence staining analysis of HR+ BC samples (paired pre- and post-neoadjuvant chemotherapy (NAC)), the levels of previously unrecognized immune cell subsets, including CD8+ T cells with pronounced expression of T-cell development (LMNA) and cytotoxicity (FGFBP2) markers, CD4+ T cells characterized by proliferation marker (ATP1B3) expression and macrophages characterized by CD52 expression, were found to be increased post-NAC, which were predictive of chemosensitivity and their antitumor function was also validated with in vitro experiments. In terms of immune checkpoint expression of CD8+ T cells, we found their changes were inconsistent post-NAC, that LAG3, VSIR were decreased, and PDCD1, HAVCR2, CTLA4, KLRC1 and BTLA were increased. In addition, we have identified novel genomic and transcriptional patterns of chemoresistant cancer cells, both innate and acquired, and have confirmed their prognostic value with TCGA cohorts. By shedding light on the ecosystem of HR+ BC reshaped by chemotherapy, our results uncover valuable candidates for predicting chemosensitivity and overcoming chemoresistance in HR+ BC.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Terapia Neoadyuvante/métodos , Linfocitos T CD8-positivos/metabolismo , Ecosistema , Análisis de Secuencia de ARN , Microambiente Tumoral , ATPasa Intercambiadora de Sodio-Potasio/uso terapéutico
9.
Phys Chem Chem Phys ; 26(5): 4541-4554, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38241021

RESUMEN

The bottom-up prediction of thermodynamic and mechanical behaviors of polymeric materials based on molecular dynamics (MD) simulation is of critical importance in polymer physics. Although the atomistically informed coarse-grained (CG) model can access greater spatiotemporal scales and retain essential chemical specificity, the temperature-transferable CG model is still a big challenge and hinders widespread application of this technique. Herein, we use a silicone polymer, i.e., polydimethylsiloxane (PDMS), having an incredibly low chain rigidity as a model system, combined with an energy-renormalization (ER) approach, to systematically develop a temperature-transferable CG model. Specifically, by introducing temperature-dependent ER factors to renormalize the effective distance and cohesive energy parameters, the developed CG model faithfully preserved the dynamics, mechanical and conformational behaviors compared with the target all-atomistic (AA) model from glassy to melt regimes, which was further validated by experimental data. With the developed CG model featuring tremendously improved computational efficiency, we systematically explored the influences of cohesive interaction strength and temperature on the dynamical heterogeneity and mechanical response of polymers, where we observed consistent trends with other linear polymers with varying chain rigidity and monomeric structures. This study serves as an extension of our proposed ER approach of developing temperature transferable CG models with diverse segmental structures, highlighting the critical role of cohesive interaction strength on CG modeling of polymer dynamics and thermomechanical behaviors.

10.
MedComm (2020) ; 4(6): e433, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38053815

RESUMEN

Small extracellular vesicles (sEVs) are essential mediators of intercellular communication within the tumor microenvironment (TME). Although the biological features of sEVs have been characterized based on in vitro culture models, recent evidence indicates significant differences between sEVs derived from tissue and those derived from in vitro models in terms of both content and biological function. However, comprehensive comparisons and functional analyses are still limited. Here, we collected sEVs from breast cancer tissues (T-sEVs), paired normal tissues (N-sEVs), corresponding plasma (B-sEVs), and tumor organoids (O-sEVs) to characterize their transcriptomic and proteomic profiles. We identified the actual cancer-specific sEV signatures characterized by enriched cell adhesion and immunomodulatory molecules. Furthermore, we revealed the significant contribution of cancer-associated fibroblasts in the sEV network within the TME. In vitro model-derived sEVs did not entirely inherit the extracellular matrix- and immunity regulation-related features of T-sEVs. Also, we demonstrated the greater immunostimulatory ability of T-sEVs on macrophages and CD8+ T cells compared to O-sEVs. Moreover, certain sEV biomarkers derived from noncancer cells in the circulation exhibited promising diagnostic potential. This study provides valuable insights into the functional characteristics of tumor tissue-derived sEVs, highlighting their potential as diagnostic markers and therapeutic agents for breast cancer.

11.
ACS Eng Au ; 3(6): 512-526, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38144677

RESUMEN

The introduction of molecular additives into thermosets often results in changes in their dynamics and mechanical properties that can have significant ramifications for diverse applications of this broad class of materials such as coatings, high-performance composites, etc. Currently, there is limited fundamental understanding of how such additives influence glass formation in these materials, a problem of broader significance in glass-forming materials. To address this fundamental problem, here, we employ a simplified coarse-grained (CG) model of a polymer network as a model of thermoset materials and then introduce a polymer additive having the same inherent rigidity and polymer-polymer interaction strength as the cross-linked polymer matrix. This energetically "neutral" or "self-plasticizing" additive model gives rise to non-trivial changes in the dynamics of glass formation and provides an important theoretical reference point for the technologically more important case of interacting additives. Based on this rather idealized model, we systematically explore the combined effect of varying the additive mass percentage (m) and cross-link density (c) on the segmental relaxation dynamics and mechanical properties of a model thermoset material with additives. We find that increasing the additive mass percentage m progressively decreases both the glass-transition temperature Tg and the fragility of glass formation, a trend opposite to increasing c so that these thermoset variables clearly have a competing effect on glass formation in these model materials. Moreover, basic mechanical properties (i.e., bulk, shear, and tensile moduli) likewise exhibit a competitive variation with the increase of m and c, which are strongly correlated with the Debye-Waller parameter ⟨u2⟩, a measure of material stiffness at a molecular scale. Our findings prove beneficial in the development of structure-property relationships for the cross-linked polymers, which could help guide the design of such network materials with tailored physical properties.

12.
Ther Adv Med Oncol ; 15: 17588359231210678, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38028145

RESUMEN

Background: The profile of immune-related adverse events (irAEs) due to programmed death-1 (PD-1) inhibitors-based combination therapy in advanced non-small cell lung cancer (NSCLC) and its relationship with survival have not been fully described. Objective: Designed to capture the spectrum of irAEs and explore the association between irAEs and clinical outcomes in patients with NSCLC. Design: This retrospective single-center study included patients with advanced NSCLC treated with PD-1 inhibitors (mainly in combination with chemotherapy) at Jiangsu Cancer Hospital. Methods: The relationship between irAEs and survival was explored using landmark analysis and time-dependent Cox regression. The subgroup analyses focused on investigating the effects of organ-specific irAE, irAE grade, and steroid dose used to treat irAE. Results: This study included 301 patients, 199 of whom received PD-1 inhibitors plus chemotherapy. The most common irAEs were skin toxicity (19.3%), endocrinopathy (21.3%), and pneumonitis (17.6%). In the entire cohort, the median progression-free survival (PFS) for patients developing and not developing irAE was 12.3 and 10.7 months (p < 0.001), and the median overall survival (OS) was 23.5 months and 20.1 months (p = 0.137), respectively. Subgroup analyses indicated that grade 3 or higher irAE, high steroid dose, and immune-related pneumonitis were detrimental to OS, whereas skin toxicity was beneficial to survival. These findings were further corroborated by both landmark analyses and Cox regression models conducted over four time points (1, 3, 6, and 12 months). Conclusion: In the real world, NSCLC patients receiving PD-1 inhibitor-based combination therapy (particularly combined with chemotherapy) experience longer PFS with irAE, though not necessarily OS. Immune-related skin toxicity is associated with a better prognosis, whereas pneumonitis grade ⩾3 irAE and high steroid dose compromise survival. Clinicians should remain cognizant of the organ-specific manifestations of irAE and take proactive measures to mitigate the progression of irAE.

13.
BMC Musculoskelet Disord ; 24(1): 853, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37907913

RESUMEN

INTRODUCTION: Pathological fractures of the femoral neck caused by necrosis of the femoral head are extremely rare. Here, we report a rare case of bilateral femoral head osteonecrosis extending to the femoral neck, with bilateral pathological fractures of the femoral neck occurring within a short period of time. CASE REPORT: A 65-year-old male with a 25-year history of daily consumption of 750 ml of liquor, presented with right hip pain after labor for 1 month. He subsequently sustained a right femoral neck fracture without trauma and underwent a right total hip arthroplasty. Two months later, he suffered a non-traumatic left femoral neck fracture and underwent a left total hip arthroplasty. Histopathological examination revealed osteonecrosis of the femoral head and neck, along with the presence of osteoclasts and granulomatous inflammation. Bone mineral density testing also showed osteoporosis. The bilateral femoral neck fractures were ruled out to be caused by any other pathological factors. DISCUSSION: This is the first report of pathological fractures of the bilateral femoral neck caused by femoral head necrosis. During the literature review process, we found that this case conforms to the histological characteristics of rapidly destructive hip disease and analyzed the etiology of femoral head necrosis and the pathogenesis of femoral neck fractures.


Asunto(s)
Fracturas del Cuello Femoral , Necrosis de la Cabeza Femoral , Fracturas Espontáneas , Anciano , Humanos , Masculino , Fracturas del Cuello Femoral/diagnóstico por imagen , Fracturas del Cuello Femoral/etiología , Fracturas del Cuello Femoral/cirugía , Cabeza Femoral , Necrosis de la Cabeza Femoral/diagnóstico por imagen , Necrosis de la Cabeza Femoral/etiología , Necrosis de la Cabeza Femoral/cirugía , Cuello Femoral/diagnóstico por imagen , Cuello Femoral/cirugía , Fijación Interna de Fracturas , Fracturas Espontáneas/etiología
14.
Nanoscale ; 15(42): 17124-17137, 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37850476

RESUMEN

Graphene-reinforced conjugated polymer (CP) nanocomposites are attractive for flexible and electronic devices, but their mechanical properties have been less explored at a fundamental level. Here, we present a predictive multiscale modeling framework for graphene-reinforced poly(3-alkylthiophene) (P3AT) nanocomposites via atomistically informed coarse-grained molecular dynamics simulations to investigate temperature-dependent thermomechanical properties at a molecular level. Our results reveal reduced graphene dispersion with increasing graphene loading. Nanocomposites with shorter P3AT side chains, lower temperatures, and higher graphene content exhibit stronger mechanical responses, which correlates with polymer dynamics. The elastic modulus increases linearly with the graphene content, which slightly deviates from the "Halpin-Tsai" micromechanical model prediction. Local stiffness analysis shows that graphene possesses the highest stiffness, followed by the P3AT backbone and side chains. Deformation-induced stronger chain alignment of the P3AT backbone compared to graphene may further promote conductive behavior. Our findings provide insights into the dynamical heterogeneity of nanocomposites, paving the way for understanding and predicting their thermomechanical properties.

15.
Nanoscale Adv ; 5(20): 5449-5459, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37822914

RESUMEN

Sodium montmorillonite (Na-MMT) clay mineral is a common type of swelling clay that has potential applications for nuclear waste storage at high temperatures and pressures. However, there is a limited understanding of the mechanical properties, local molecular stiffness, and dynamic heterogeneity of this material at elevated temperatures and pressures. To address this, we employ all-atomistic (AA) molecular dynamics (MD) simulation to investigate the tensile behavior of Na-MMT clay over a wide temperature range (500 K to 1700 K) and pressures (200 atm to 100 000 atm). The results show that increasing the temperature significantly reduces the tensile modulus, strength, and failure strain, while pressure has a minor effect compared to temperature, as seen in the normalized pressure-temperature plot. Mean-square displacement (MSD) analysis reveals increased molecular stiffness with increasing pressure and decreasing temperature, indicating suppressed atomic mobility. Our simulations indicate temperature-dependent dynamical heterogeneity in the Na-MMT model, supported by experimental studies and quantified local molecular stiffness distribution. These findings enhance our understanding of the tensile response and dynamical heterogeneity of Na-MMT clay under extreme conditions, aiding the development of clay minerals for engineering applications such as nuclear waste storage and shale gas extraction.

16.
Clin Cancer Res ; 29(24): 5227-5243, 2023 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-37831062

RESUMEN

PURPOSE: Axillary lymph nodes (LN) are the primary and dominant metastatic sites in breast cancer. However, the interaction between tumor cells and immune cells within metastatic LNs (mLN) remains poorly understood. In our study, we explored the effect of CD24hiCD27+ regulatory B cells (Breg) within mLNs on orchestrating drug resistance of breast cancer cells. EXPERIMENTAL DESIGN: We collected mLN samples from patients with breast cancer who had received standard neoadjuvant therapy (NAT) and analyzed the spatial features of CD24hiCD27+ Bregs through multicolor immunofluorescence staining. The effect of CD24hiCD27+ Bregs on drug resistance of breast cancer cells was evaluated via in vitro experiments. A mouse model with mLNs was used to evaluate the strategies with blocking the interactions between Bregs and breast cancer for improving tumor regression within mLNs. RESULTS: In patients with breast cancer who had received NAT, there is a close spatial correlation between activated CD24hiCD27+ Bregs and residual tumor cells within mLNs. Mechanistically, CD24hiCD27+ Bregs greatly enhance the acquisition of multidrug resistance and stem-like features of breast cancer cells by secreting IL6 and TNFα. More importantly, breast cancer cells further promote the activation of CD24hiCD27+ Bregs via CD40L-dependent and PD-L1-dependent proximal signals, forming a positive feedback pattern. PD-L1 blockade significantly attenuates the drug resistance of breast cancer cells induced by CD24hiCD27+ Bregs, and addition of anti-PD-L1 antibody to chemotherapy improves tumor cell remission in mLNs. CONCLUSIONS: Our study reveals the pivotal role of CD24hiCD27+ Bregs in promoting drug resistance by interacting with breast cancer cells in mLNs, providing novel evidence for an improved strategy of chemoimmunotherapy combination for patients with breast cancer with mLNs.


Asunto(s)
Linfocitos B Reguladores , Neoplasias de la Mama , Animales , Ratones , Humanos , Femenino , Neoplasias de la Mama/patología , Antígeno B7-H1 , Linfocitos B Reguladores/patología , Ganglios Linfáticos/patología , Resistencia a Múltiples Medicamentos
17.
Mol Immunol ; 163: 174-180, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37812989

RESUMEN

Psoriatic arthritis (PsA) is a disease that transformed from psoriasis (PsO), and its underlying mechanisms are still not fully understood. Overactivation of the immune system is a key factor driving inflammatory diseases. Our goal is to define the unbalanced subsets of peripheral blood CD4 +T cells between PsO and PsA patients. Blood samples from 43 patients (23 PsA and 20 PsO) and 36 healthy donors (HD) were studied. Peripheral blood mononuclear cells (PBMC) were separated from blood and underwent fluorescent staining to assess CD4+T cell subsets by flow cytometry. We found that frequencies of various CD4+T cells including Th1, Th2, Th17, and Tfh were higher in the patients with PsO or PsA than those of healthy donors, indicating the general expansion of CD4+T cells in inflammatory conditions. More importantly, we observed the significant imbalance of Th1/Th2 between patients with PsO and PsA. Pearson correlation analysis showed that Th1/Th2 ratio was positively correlated with disease activity in psoriatic arthritis (DAPSA), Tfh/Tfr ratio was positively correlated with DAPSA score and visual analogue scale (VAS) score in PsA patients. Together, our results highlight the CD4+T cell changes in the transition from PsO to PsA, may contribute to early assessment and intervention.


Asunto(s)
Artritis Psoriásica , Psoriasis , Humanos , Leucocitos Mononucleares , Linfocitos T CD4-Positivos , Subgrupos de Linfocitos T
18.
Cancer Sci ; 114(12): 4607-4621, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37770420

RESUMEN

Evaluating the accuracy of pulmonary nodule diagnosis avoids repeated low-dose computed tomography (LDCT)/CT scans or invasive examination, yet remains a main clinical challenge. Screening for new diagnostic tools is urgent. Herein, we established a nomogram based on the diagnostic signature of five circulating tsRNAs and CT information to predict malignant pulmonary nodules. In total, 249 blood samples of patients with pulmonary nodules were selected from three different lung cancer centers. Five tsRNAs were identified in the discovery and training cohorts and the diagnostic signature was established by the randomForest algorithm (tRF-Ser-TGA-003, tRF-Val-CAC-005, tRF-Ala-AGC-060, tRF-Val-CAC-024, and tiRNA-Gln-TTG-001). A nomogram was developed by combining tsRNA signature and CT information. The high level of accuracy was identified in an internal validation cohort (n = 83, area under the receiver operating characteristic curve [AUC] = 0.930, sensitivity 100.0%, specificity 73.8%) and external validation cohort (n = 66, AUC = 0.943, sensitivity 100.0%, specificity 86.8%). Furthermore, the diagnostic ability of our model discriminating invasive malignant ones from noninvasive lesions was assessed. A robust performance was achieved in the diagnosis of invasive malignant lesions in both training and validation cohorts (discovery cohort: AUC = 0.850, sensitivity 86.0%, specificity 81.4%; internal validation cohort: AUC = 0.784, sensitivity 78.8%, specificity 78.1%; and external validation cohort: AUC = 0.837, sensitivity 85.7%, specificity 84.0%). This novel circulating tsRNA-based diagnostic model has potential significance in predicting malignant pulmonary nodules. Application of the model could improve the accuracy of pulmonary nodule diagnosis and optimize surgical plans.


Asunto(s)
Neoplasias Pulmonares , Nódulos Pulmonares Múltiples , Humanos , Nomogramas , Nódulos Pulmonares Múltiples/diagnóstico por imagen , Nódulos Pulmonares Múltiples/patología , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/genética , Tomografía Computarizada por Rayos X/métodos , Pulmón/patología , Estudios Retrospectivos
19.
Cell Death Differ ; 30(11): 2365-2381, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37689814

RESUMEN

The clinical efficacy of Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors (EGFR-TKIs) is limited by the emergence of drug resistance. We hypothesise that restoring dysregulated circular RNAs under initial treatment with EGFR-TKIs may enhance their effectiveness. Through high-throughput screening, we identify that combining circular RNA IGF1R (cIGF1R) with EGFR-TKIs significantly synergises to suppress tumour regrowth following drug withdrawal. Mechanistically, cIGF1R interacts with RNA helicase A (RHA) to depress insulin-like growth factor 1 receptor (IGF1R) mRNA splicing, negatively regulating the parent IGF1R signalling pathway. This regulation is similar to that of IGF1R inhibitor, which induces drug-tolerant persister (DTP) state with activated mitophagy. The cIGF1R also encodes a peptide C-IGF1R that reduces Parkin-mediated ubiquitination of voltage-dependent anion channel 1 (VDAC1) to restrict mitophagy, acting as a molecular switch that promotes the transition of DTP to apoptosis. Our study shows that combining cIGF1R with EGFR-TKIs efficiently reduces the emergence of DTP.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/patología , Mitofagia , Receptores ErbB/metabolismo , Resistencia a Antineoplásicos/genética , Línea Celular Tumoral , Inhibidores de Proteínas Quinasas/farmacología , Receptor IGF Tipo 1
20.
Cell Death Dis ; 14(8): 551, 2023 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-37620336

RESUMEN

Super-enhancers (SEs) are regulatory element clusters related to cell identity and disease. While the studies illustrating the function of SE-associated long noncoding RNAs (lncRNAs) in lung adenocarcinoma (LUAD) remains few. In our research, a SE-driven lncRNA, LINC00880, was identified, which showed higher expression in LUAD compared to normal tissues and indicated worse outcomes in stage I LUADs. We found that the transcription factor (TF) FOXP3 could simultaneously occupy the promoter and SE regions of LINC00880 to promote its transcription. The oncogenic function of LINC00880 was validated both in vitro and in vivo. Mechanically, LINC00880 binds to the protein CDK1 to increase its kinase activity, which rely on the phosphorylation state of pT161 in CDK1. LINC00880 also promotes the interaction between CDK1 and PRDX1. Moreover, LINC00880 interacts with PRDX1, which indicates that LINC00880 acts as a protein scaffold between CDK1 and PRDX1 to form a ternary complex, thereby resulting in the activation of PI3K/AKT to promote malignancy. Our results reveal that the SE-associated lncRNA LINC00880 regulates the CDK1/PRDX1 axis to sustain the malignancy of LUAD, providing a novel therapeutic target.


Asunto(s)
Adenocarcinoma , ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , Fosfatidilinositol 3-Quinasas , Secuencias Reguladoras de Ácidos Nucleicos , Factores de Transcripción , Adenocarcinoma/genética , Pulmón , Peroxirredoxinas , Proteína Quinasa CDC2/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA