Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Theor Appl Genet ; 136(4): 72, 2023 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-36952017

RESUMEN

KEY MESSAGE: Here, we provide an updated set of guidelines for naming genes in wheat that has been endorsed by the wheat research community. The last decade has seen a proliferation in genomic resources for wheat, including reference- and pan-genome assemblies with gene annotations, which provide new opportunities to detect, characterise, and describe genes that influence traits of interest. The expansion of genetic information has supported growth of the wheat research community and catalysed strong interest in the genes that control agronomically important traits, such as yield, pathogen resistance, grain quality, and abiotic stress tolerance. To accommodate these developments, we present an updated set of guidelines for gene nomenclature in wheat. These guidelines can be used to describe loci identified based on morphological or phenotypic features or to name genes based on sequence information, such as similarity to genes characterised in other species or the biochemical properties of the encoded protein. The updated guidelines provide a flexible system that is not overly prescriptive but provides structure and a common framework for naming genes in wheat, which may be extended to related cereal species. We propose these guidelines be used henceforth by the wheat research community to facilitate integration of data from independent studies and allow broader and more efficient use of text and data mining approaches, which will ultimately help further accelerate wheat research and breeding.


Asunto(s)
Fitomejoramiento , Triticum , Triticum/genética , Fenotipo , Genes de Plantas , Grano Comestible/genética
2.
Plant Dis ; 98(7): 891-897, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30708850

RESUMEN

Stripe rust is a major fungal disease of wheat. It frequently becomes epidemic in southeastern Gansu province, a stripe rust hot spot in China. Evaluations of wheat germplasm response are crucial for developing cultivars to control the disease. In total, 57 wheat cultivars and lines from Europe and other countries, comprising 36 cultivars with documented stripe rust resistance genes and 21 with unknown genes, were tested annually with multiple races of Puccinia striiformis f. sp. tritici in the field at Tianshui in Gansu province from 1993 to 2013. Seven wheat lines were highly resistant, with infection type (IT) 0 during the entire period; 16 were moderately resistant (IT 0;-2); and 26 were moderately susceptible (IT 0;-4), with low maximum disease severity compared with the susceptible control Huixianhong. 'Strampelli' and 'Libellula', with three and five quantitative trait loci, respectively, for stripe rust resistance have displayed durable resistance in this region for four decades. Ten cultivars, including 'Lantian 15', 'Lantian 26', and 'Lantian 31', with stripe rust resistance derived from European lines, were developed in our breeding program and have made a significant impact on controlling stripe rust in southeastern Gansu. Breeding resistant cultivars with multiple adult-plant resistance genes seems to be a promising strategy in wheat breeding for managing stripe rust in this region and other hot spots.

3.
Curr Med Chem ; 20(23): 2899-913, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23627941

RESUMEN

Pharmacotherapy using natural substances can be currently regarded as a very promising future alternative to conventional therapy. With the rapid development of biotechnologies and analytical techniques, a great number of methods have been developed for the identification and quantification of the material, extracts, and products of natural ingredients. The advances available today. The need for safer drugs without side effects has led to the use of natural ingredients with proven safety. In recent years, some bioactive polysaccharides isolated from natural sources have attracted much attention in the field of biochemistry and pharmacology. As an example, polysaccharides or their glycoconjugates were shown to exhibit multiple biological activities including anticarcinogenic, anticoagulant, immunostimulating, antioxidant, etc. During the last several years, we have witnessed a steady expansion in the number of publications that focus in antioxidant polysaccharides. This review presents current findings on the latest advancements and trends in antioxidant polysaccharides isolated from the following: plants, fungi, bacteria, animal sources, and algae. Some interesting studies focus on investigation of the relationship between their structure and antioxidant activity, elucidation of their antioxidant mechanism at the molecular level, and improvement of their various biological activities by chemical modifications. Although the mechanism of their antioxidant action is still not completely clear, these polysaccharides are suggested to enhance cell-mediated immune responses in vivo and in vitro and act as biological response modifiers.


Asunto(s)
Antioxidantes/química , Polisacáridos/química , Animales , Antioxidantes/farmacología , Bacterias/química , Bacterias/efectos de los fármacos , Cianobacterias/química , Cianobacterias/efectos de los fármacos , Hongos/química , Hongos/efectos de los fármacos , Humanos , Polisacáridos/farmacología
4.
Plant Dis ; 94(1): 45-53, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30754399

RESUMEN

Identification of resistance genes is important for developing leaf rust resistant wheat (Triticum aestivum) cultivars. A total of 102 Chinese winter wheat cultivars and advanced lines were inoculated with 24 pathotypes of Puccinia triticina for postulation of leaf rust resistance genes effective at the seedling stage. These genotypes were also planted in the field for characterization of slow rusting responses to leaf rust in the 2006-07 and 2007-08 cropping seasons. Fourteen leaf rust resistance genes-Lr1, Lr2a, Lr3bg, Lr3ka, Lr14a, Lr16, Lr17a, Lr18, Lr20, Lr23, Lr24, Lr26, Lr34, and LrZH84-either singly or in combinations, were postulated in 65 genotypes, whereas known resistance genes were not identified in the other 37 accessions. Resistance gene Lr26 was present in 44 accessions. Genes Lr14a and Lr34 were each detected in seven entries. Lr1 and Lr3ka were each found in six cultivars, and five lines possessed Lr16. Lr17a and Lr18 were each identified in four lines. Three cultivars were postulated to possess Lr3bg. Genes Lr20, Lr24, and LrZH84 were each present in two cultivars. Each of the genes Lr2a and Lr23 may exist in one line. Fourteen genotypes showed slow leaf rusting resistance in two cropping seasons.

5.
Theor Appl Genet ; 118(3): 525-39, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18989655

RESUMEN

Low-molecular-weight glutenin subunit (LMW-GS) Glu-B3 has a significant influence on the processing quality of the end-use products of common wheat. To characterize the LMW-GS genes at the Glu-B3 locus, gene-specific PCR primers were designed to amplify eight near-isogenic lines and Cheyenne with different Glu-B3 alleles (a, b, c, d, e, f, g, h and i) defined by protein electrophoretic mobility. The complete coding regions of four Glu-B3 genes with complete coding sequence were obtained and designated as GluB3-1, GluB3-2, GluB3-3 and GluB3-4. Ten allele-specific PCR markers designed from the SNPs present in the sequenced variants discriminated the Glu-B3 proteins of electrophoretic mobility alleles a, b, c, d, e, f, g, h and i. These markers were validated on 161 wheat varieties and advanced lines with different Glu-B3 alleles, thus confirming that the markers can be used in marker-assisted breeding for wheat grain processing quality.


Asunto(s)
Genes de Plantas , Glútenes/genética , Subunidades de Proteína/genética , Triticum/genética , Alelos , Cromosomas de las Plantas , Marcadores Genéticos , Haplotipos , Reacción en Cadena de la Polimerasa , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de Proteína , Triticum/crecimiento & desarrollo
6.
Phytopathology ; 98(12): 1291-6, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19000003

RESUMEN

Stripe rust and powdery mildew, caused by Puccinia striiformis f. sp. tritici and Blumeria graminis f. sp. tritici, respectively, are severe diseases in wheat (Triticum aestivum) worldwide. In our study, differential amplification of a 201-bp cDNA fragment was obtained in a cDNA-amplified fragment length polymorphism (AFLP) analysis between near-isogenic lines Yr10NIL and Avocet S, inoculated with P. striiformis f. sp. tritici race CYR29. A full-length cDNA (1,357 bp) of a homeobox-like gene, TaHLRG (GenBank accession no. EU385606), was obtained in common wheat based on the sequence of GenBank accession AW448633 with high similarity to the above fragment. The genomic DNA sequence (2,396 bp) of TaHLRG contains three exons and two introns. TaHLRG appeared to be a novel homeobox-like gene, encoding a protein with a predicted 66-amino-acid homeobox domain. It was involved in race-specific responses to stripe rust in real-time quantitative polymerase chain reaction (PCR) analyses with Yr9NIL, Yr10NIL, and Avocet S. It was also associated with adult-plant resistance to stripe rust and powdery mildew based on the field trials of doubled haploid lines derived from the cross Bainong 64/Jingshuang 16 and two F(2:3) populations from the crosses Lumai 21/Jingshuang 16 and Strampelli/Huixianhong. A functional marker, THR1 was developed based on the sequence of TaHLRG and located on chromosome 6A using a set of Chinese Spring nulli-tetrasomic lines.


Asunto(s)
Ascomicetos/crecimiento & desarrollo , Basidiomycota/crecimiento & desarrollo , Enfermedades de las Plantas/genética , Proteínas de Plantas/genética , Triticum/genética , Secuencia de Aminoácidos , Clonación Molecular , ADN de Plantas/química , ADN de Plantas/genética , Inmunidad Innata/genética , Datos de Secuencia Molecular , Enfermedades de las Plantas/microbiología , Reacción en Cadena de la Polimerasa , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido , Triticum/microbiología
7.
Theor Appl Genet ; 117(7): 1069-75, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18651124

RESUMEN

Leaf rust, caused by Puccinia triticina, is one of the most widespread diseases in common wheat (Triticum aestivum L.) worldwide. With the objective of identifying and mapping new genes for resistance to leaf rust, F(1), F(2) plants and F(3) lines from a cross between resistant line Zhou 8425B and susceptible line Chinese Spring were inoculated with Chinese P. triticina races THTT and MBHP in the greenhouse. A total of 793 pairs of SSR primers were used to test the parents and resistant and susceptible bulks. Seven polymorphic chromosome 1B markers were used for genotyping the F(2) and F(3) populations. Zhou 8425B carried a single dominant resistance gene, temporarily designated LrZH84, linked to SSR markers gwm582 and barc8 with genetic distances of 3.9 and 5.2 cM, respectively. The Xbarc8 allele co-segregated with Lr26 in the F(3) population. The Xgwm582 allele associated with LrZH84 was identified as a leaf rust resistance gene and shown to be present in the Predgornaia 2 parent of Zhou 8425B. The seedling reaction pattern of LrZH84 was different from those of lines with Lr26, Lr33, Lr44 and Lr46, all of which are located in chromosome 1B. It was concluded that LrZH84 is likely to be a new leaf rust resistance gene.


Asunto(s)
Genes de Plantas , Enfermedades de las Plantas/genética , Triticum/genética , Basidiomycota , Mapeo Cromosómico , Cromosomas de las Plantas , Genes Dominantes , Ligamiento Genético , Marcadores Genéticos , Genotipo , Repeticiones de Minisatélite , Polimorfismo Genético , Triticum/microbiología
8.
Theor Appl Genet ; 116(2): 213-21, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17943267

RESUMEN

Phytoene synthase (Psy), a critical enzyme in the carotenoid biosynthetic pathway, demonstrated high association with the yellow pigment (YP) content in wheat grain. Characterization of Psy genes and the development of functional markers for them are of importance for marker-assisted selection in wheat breeding. In this study, the full-length genomic DNA sequence of a Psy gene (Psy-A1) located on chromosome 7A, was characterized by in silico cloning and experimental validation. The cloned Psy-A1 comprises six exons and five introns, 4,175 bp in total, and an ORF of 1,284 bp. A co-dominant marker, YP7A, was developed based on polymorphisms of two haplotypes of Psy-A1, yielding 194 and 231-bp fragments in cultivars with high and low YP content, respectively. The marker YP7A was mapped on chromosome 7AL using an RIL population from cross PH82-2/Neixing 188, and a set of Chinese Spring nullisomic-tetrasomic lines and ditelosomic line 7AS. Psy-A1, co-segregating with the STS marker YP7A, was linked to SSR marker Xwmc809 on chromosome 7AL with a genetic distance of 5.8 cM, and explained 20-28% of the phenotypic variance for YP content across three environments. A total of 217 Chinese wheat cultivars and advanced lines were used to validate the association between the polymorphic band pattern and grain YP content. The results showed that the functional marker YP7A was closely related to grain YP content and, therefore, could be used in wheat breeding programs targeting of YP content for various wheat-based products.


Asunto(s)
Transferasas Alquil y Aril/genética , Marcadores Genéticos/genética , Triticum/enzimología , Secuencia de Bases , Cruzamiento/métodos , Mapeo Cromosómico , Clonación Molecular , Cartilla de ADN/genética , Componentes del Gen , Geranilgeranil-Difosfato Geranilgeraniltransferasa , Datos de Secuencia Molecular , Alineación de Secuencia , Análisis de Secuencia de ADN , Triticum/genética
9.
Theor Appl Genet ; 115(7): 971-80, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17712543

RESUMEN

Pre-harvest sprouting (PHS) of wheat reduces the quality of wheat grain, and improving PHS tolerance is a priority in certain wheat growing regions where conditions favorable for PHS exist. Two new Viviparous-1 allelic variants related to PHS tolerance were investigated on B genome of bread wheat, and designated as Vp-1Bb and Vp-1Bc, respectively. Sequence analysis showed that Vp-1Bb and Vp-1Bc had an insertion of 193-bp and a deletion of 83-bp fragment, respectively, located in the third intron region of the Vp-1B gene. The insertion and deletion affected the expression level of the Vp1 at mature seed stage, more correctly spliced transcripts were observed from the genotypes with either insertion or deletion than that of the wild type. Based on these insertions and deletions, a co-dominant STS marker of Vp-1B gene was developed and designated as Vp1B3, which in most cases could amplify either 845 or 569-bp fragment from the tolerant cultivars, and 652-bp from the susceptible ones. This Vp1B3 marker was mapped to chromosome 3BL using a set of Chinese Spring nulli-tetrasomic and ditelosomic lines. A total of 89 white-grained Chinese wheat cultivars and advanced lines, were used to validate the relationship between the polymorphic fragments of Vp1B3 and PHS tolerance. Statistical analysis indicated that Vp1B3 was strongly associated with PHS tolerance in this set of Chinese germplasm, suggesting that Vp1B3 could be used as an efficient and reliable co-dominant marker in the evaluation of wheat germplasm for PHS tolerance and marker-assisted breeding for PHS tolerant cultivars.


Asunto(s)
Germinación/genética , Semillas/crecimiento & desarrollo , Lugares Marcados de Secuencia , Triticum/crecimiento & desarrollo , Triticum/genética , Secuencia de Bases , China , Marcadores Genéticos , Germinación/fisiología , Datos de Secuencia Molecular
10.
Theor Appl Genet ; 115(1): 47-58, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17426955

RESUMEN

Polyphenol oxidase (PPO) activity is highly related to the undesirable browning of wheat-based end products, especially Asian noodles. Characterization of PPO genes and the development of their functional markers are of great importance for marker-assisted selection in wheat breeding. In the present study, complete genomic DNA sequences of two PPO genes, one each located on chromosomes 2A and 2D and their allelic variants were characterized by means of in silico cloning and experimental validation. Sequences were aligned at both DNA and protein levels. Two haplotypes on chromosome 2D showed 95.2% sequence identity at the DNA level, indicating much more sequence diversity than those on chromosome 2A with 99.6% sequence identity. Both of the PPO genes on chromosomes 2A and 2D contain an open reading frame (ORF) of 1,731 bp, encoding a PPO precursor peptide of 577 amino acids with a predicted molecular mass of approximately 64 kD. Two complementary dominant STS markers, PPO16 and PPO29, were developed based on the PPO gene haplotypes located on chromosome 2D; they amplify a 713-bp fragment in cultivars with low PPO activity and a 490-bp fragment in those with high PPO activity, respectively. The two markers were mapped on chromosome 2DL using a doubled haploid population derived from the cross Zhongyou 9507/CA9632, and a set of nullisomic-tetrasomic lines and ditelosomic line 2DS of Chinese Spring. QTL analysis indicated that the PPO gene co-segregated with the two STS markers and was closely linked to SSR marker Xwmc41 on chromosome 2DL, explaining from 9.6 to 24.4% of the phenotypic variance for PPO activity across three environments. In order to simultaneously detect PPO loci on chromosomes 2A and 2D, a multiplexed marker combination PPO33/PPO16 was developed and yielded distinguishable DNA patterns in a number of cultivars. The STS marker PPO33 for the PPO gene on chromosome 2A was developed from the same gene sequences as PPO18 that we reported previously, and can amplify a 481-bp and a 290-bp fragment from cultivars with low and high PPO activity, respectively. A total of 217 Chinese wheat cultivars and advanced lines were used to validate the association between the polymorphic fragments and grain PPO activity. The results showed that the marker combination PPO33/PPO16 is efficient and reliable for evaluating PPO activity and can be used in wheat breeding programs aimed for noodle and other end product quality improvement.


Asunto(s)
Alelos , Catecol Oxidasa/genética , Cromosomas de las Plantas/genética , Variación Genética , Triticum/enzimología , Triticum/genética , Secuencia de Aminoácidos , Secuencia de Bases , Catecol Oxidasa/fisiología , Marcadores Genéticos/fisiología , Datos de Secuencia Molecular , Triticum/fisiología
11.
Theor Appl Genet ; 114(3): 451-60, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17106734

RESUMEN

Low-molecular-weight glutenin subunits (LMW-GS) play an important role in bread and noodle processing quality by influencing the viscoelasticity and extensibility of dough. The objectives of this study were to characterize Glu-D3 subunit coding genes and to develop molecular markers for identifying Glu-D3 gene haplotypes. Gene specific primer sets were designed to amplify eight wheat cultivars containing Glu-D3a, b, c, d and e alleles, defined traditionally by protein electrophoretic mobility. Three novel Glu-D3 DNA sequences, designated as GluD3-4, GluD3-5 and GluD3-6, were amplified from the eight wheat cultivars. GluD3-4 showed three allelic variants or haplotypes at the DNA level in the eight cultivars, which were designated as GluD3-41, GluD3-42 and GluD3-43. Compared with GluD3-42, a single nucleotide polymorphism (SNP) was detected for GluD3-43 in the coding region, resulting in a pseudo-gene with a nonsense mutation at the 119th position of deduced peptide, and a 3-bp insertion was found in the coding region of GluD3-41, leading to a glutamine insertion at the 249th position of its deduced protein. The coding regions for GluD3-5 and GluD3-6 showed no allelic variation in the eight cultivars tested, indicating that they were relatively conservative in common wheat. Based on the 12 allelic variants of three Glu-D3 genes identified in this study and three detected previously, seven STS markers were established to amplify the corresponding gene sequences in wheat cultivars containing five Glu-D3 alleles (a, b, c, d and e). The seven primer sets M2F12/M2R12, M2F2/M2R2, M2F3/M2R3, M3F1/M3R1, M3F2/M3R2, M4F1/M4R1 and M4F3/M4R3 were specific to the allelic variants GluD3-21/22, GluD3-22, GluD3-23, GluD3-31, GluD3-32, GluD3-41 and GluD3-43, respectively, which were validated by amplifying 20 Chinese wheat cultivars containing alleles a, b, c and f based on protein electrophoretic mobility. These markers will be useful to identify the Glu-D3 gene haplotypes in wheat breeding programs.


Asunto(s)
ADN de Plantas/genética , Genes de Plantas , Glútenes/genética , Mutación/genética , Triticum/genética , Alelos , Secuencia de Aminoácidos , Marcadores Genéticos , Glútenes/química , Haplotipos , Datos de Secuencia Molecular , Peso Molecular , Reacción en Cadena de la Polimerasa , Reproducibilidad de los Resultados , Homología de Secuencia
12.
Theor Appl Genet ; 113(7): 1247-59, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16941095

RESUMEN

Low-molecular-weight glutenins (LMW-GS) in common wheat (Triticum aestivum L.) are of great importance for processing quality of pan bread and noodles. The objectives of this study are to identify LMW-GS coding genes at GluD3 locus on chromosome 1D and to establish relationships between these genes and GluD3 alleles (a, b, c, d, and e) defined by protein electrophoretic mobility. Specific primer sets were designed to amplify each of the three LMW-GS chromosome 1D gene regions including upstream, coding and downstream regions of eight wheat cultivars containing GluD3 a, b, c, d and e alleles. Three LMW-GS genes, designated as GluD3-1, GluD3-2 and GluD3-3, were amplified from the eight wheat cultivars. The allelic variants of these three genes were analysed at the DNA and protein level. GluD3-1 showed two allelic variants or haplotypes, one common to cultivars containing protein alleles a, d and e (designated GluD3-11) and the other was present in cultivars with alleles b and c (designated GluD3-12). Comparing with GluD3-12, a 3-bp deletion was found in the coding region of the N-terminal repetitive domain of GluD3-11, leading to a glutamine deletion at the 116th position. GluD3-2 had three variants at the DNA level in the eight cultivars, which were designated as GluD3-21, GluD3-22 and GluD3-23. In comparison to GluD3-21, a single nucleotide polymorphism (SNP) was detected for GluD3-22 in the signal peptide region, resulting in an amino acid change from alanine to threonine at the 11th position; and 11 mutations were found at GluD3-23, with five in upstream region, four in coding region and two in downstream region, respectively. GluD3-3 had two haplotypes, designated as GluD3-31 and GluD3-32, both belonging to LMW-s glutenin subunits though their first amino acids in N-terminal region are different. Compared with the GenBank GluD3 genes, nucleotide sequences of GluD3-21 and GluD3-23 were the same as X13306 and AB062875, respectively. GluD3-22 and GluD3-11 had only one-base difference from U86027 and AB062865. GluD3-12 was not found in the GenBank database, indicating a newly identified GluD3 gene variation. GluD3-3 was a new gene different from any other known GluD3 genes. Analyses of the relationship between Glu-D3 alleles defined by protein electrophoretic mobility and different GluD3 gene variations at the DNA or protein level provided molecular basis for DNA based identification of glutenin alleles.


Asunto(s)
Alelos , Variación Genética , Glútenes/genética , Subunidades de Proteína/genética , Triticum/genética , Agricultura , Secuencia de Aminoácidos , Secuencia de Bases , Biología Computacional , Cartilla de ADN , Ensayo de Cambio de Movilidad Electroforética , Haplotipos/genética , Datos de Secuencia Molecular , Alineación de Secuencia , Análisis de Secuencia de ADN
13.
Theor Appl Genet ; 113(2): 177-85, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16791685

RESUMEN

Mexican races of maize (Zea mays L.) represent a valuable genetic resource for breeding and genetic surveys. We applied simple sequence repeat (SSR) markers to characterize 25 accessions of races of maize from Mexico. Our objectives were to (1) study the molecular genetic diversity within and among these accessions and (2) examine their relationships as assumed previously on the basis of morphological data. A total of 497 individuals were fingerprinted with 25 SSR markers. We observed a high total number of alleles (7.84 alleles per locus) and total gene diversity (0.61), confirming the broad genetic base of the maize races from Mexico. In addition, the accessions were grouped into distinct racial complexes on the basis of a model-based clustering approach. The principal coordinate analyses of the four Modern Incipient hybrids corroborated the proposed parental races of Chalqueño, Cónico Norteño, Celaya, and Bolita on the basis of the morphological data. Consequently, for some of the accessions, hybridizations provide a clue that can further be used to explain the associations among the Mexican races of maize.


Asunto(s)
Marcadores Genéticos , Zea mays/genética , Alelos , Variación Genética
14.
Theor Appl Genet ; 112(8): 1434-40, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16525837

RESUMEN

Stripe rust, caused by Puccinia striiformis f. sp. tritici (PST), is one of the most devastating diseases in common wheat (Triticum aestivum L.) worldwide. The objectives of this study were to map a stripe rust resistance gene in Chinese wheat cultivar Chuanmai 42 using molecular markers and to investigate its allelism with Yr24 and Yr26. A total of 787 F2 plants and 186 F3 lines derived from a cross between resistant cultivar Chuanmai 42 and susceptible line Taichung 29 were used for resistance gene tagging. Also 197 F2 plants from the cross Chuanmai 42xYr24/3*Avocet S and 726 F2 plants from Chuanmai 42xYr26/3*Avocet S were employed for allelic test of the resistance genes. In all, 819 pairs of wheat SSR primers were used to test the two parents, as well as resistant and susceptible bulks. Subsequently, nine polymorphic markers were employed for genotyping the F2 and F3 populations. Results indicated that the stripe rust resistance in Chuanmai 42 was conferred by a single dominant gene, temporarily designated YrCH42, located close to the centromere of chromosome 1B and flanked by nine SSR markers Xwmc626, Xgwm273, Xgwm11, Xgwm18, Xbarc137, Xbarc187, Xgwm498, Xbarc240 and Xwmc216. The resistance gene was closely linked to Xgwm498 and Xbarc187 with genetic distances of 1.6 and 2.3 cM, respectively. The seedling tests with 26 PST isolates and allelic tests indicated that YrCH42, Yr24 and Yr26 are likely to be the same gene.


Asunto(s)
Mapeo Cromosómico , Cromosomas de las Plantas , Genes de Plantas , Inmunidad Innata/genética , Enfermedades de las Plantas/genética , Triticum/genética , Alelos , China , Cruzamientos Genéticos , ADN de Plantas/análisis , Frecuencia de los Genes , Ligamiento Genético , Marcadores Genéticos
15.
Theor Appl Genet ; 112(6): 1098-103, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16450183

RESUMEN

Stripe rust, caused by Puccinia striiformis f. sp. tritici (PST), is one of the most damaging diseases in common wheat (Triticum aestivum L.). With the objective of identifying and tagging new genes for resistance to stripe rust, F1, F2 and F3 populations from the cross Zhou 8425B/Chinese Spring were inoculated with Chinese PST isolate CYR32 in the greenhouse. A total of 790 SSR primers were used to test the parents and resistant and susceptible bulks. The resulting seven polymorphic markers on chromosome 7BL were used for genotyping F2 and F3 populations. Results indicated that Zhou 8425B carries a single dominant resistance gene, temporarily designated YrZH84, closely linked to SSR markers Xcfa2040-7B and Xbarc32-7B with genetic distances of 1.4 and 4.8 cM, respectively. In a seedling test with 25 PST isolates, the reaction patterns of YrZH84 were different from those of lines carrying Yr2 and Yr6. It was concluded that YrZH84 is probably a new stripe rust resistance gene.


Asunto(s)
Genes de Plantas , Inmunidad Innata/genética , Repeticiones de Microsatélite/genética , Enfermedades de las Plantas/genética , Polimorfismo Genético , Triticum/genética , Clonación Molecular , Cruzamientos Genéticos , Modelos Genéticos , Fenotipo , Reacción en Cadena de la Polimerasa
16.
Phytopathology ; 96(7): 784-9, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18943153

RESUMEN

ABSTRACT Powdery mildew, caused by Blumeria graminis f. sp. tritici, is a major disease to wheat (Triticum aestivum) worldwide. Use of adult-plant resistance (APR) is an effective method to develop wheat cultivars with durable resistance to powdery mildew. In the present study, 432 molecular markers were used to map quantitative trait loci (QTL) for APR to powdery mildew in a doubled haploid (DH) population with 107 lines derived from the cross Fukuho-komugi x Oligoculm. Field trials were conducted in Beijing and Anyang, China during 2003-2004 and 2004-2005 cropping seasons, respectively. The DH lines were planted in a randomized complete block design with three replicates. Artificial inoculation was carried out in Beijing with highly virulent isolate E20 of B. graminis f. sp. tritici and the powdery mildew severity on penultimate leaf was evaluated four times, and the maximum disease severity (MDS) on penultimate leaf was investigated in Anyang under natural inoculation in May 2004 and 2005. The heritability of resistance to powdery mildew for MDS in 2 years and two locations ranged from 0.82 to 0.93, while the heritability for area under the disease progress curve was between 0.84 and 0.91. With the method of composite interval mapping, four QTL for APR to powdery mildew were detected on chromosomes 1AS, 2BL, 4BL, and 7DS, explaining 5.7 to 26.6% of the phenotypic variance. Three QTL on chromosomes 1AS, 2BL, and 7DS were derived from the female, Fukuho-komugi, while the one on chromosome 4BL was from the male, Oligoculm. The QTL on chromosome 1AS showed high genetic effect on powdery mildew resistance, accounting for 19.5 to 26.6% of phenotypic variance across two environments. The QTL on 7DS associated with the locus Lr34/Yr18, flanked by microsatellite Xgwm295.1 and Ltn (leaf tip necrosis). These results will benefit for improving powdery mildew resistance in wheat breeding programs.

17.
Plant Dis ; 90(10): 1302-1312, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30780937

RESUMEN

Identification of seedling and slow stripe rust resistance genes is important for gene pyramiding, gene deployment, and developing slow-rusting wheat cultivars to control the disease. A total of 98 Chinese lines were inoculated with 26 pathotypes of Puccinia striiformis f. sp. tritici for postulation of stripe rust resistance genes effective at the seedling stage. A total of 135 wheat lines were planted at two locations to characterize their slow rusting responses to stripe rust in the 2003-2004 and 2004-2005 cropping seasons. Genes Yr2, Yr3a, Yr4a, Yr6, Yr7, Yr9, Yr26, Yr27, and YrSD, either singly or in combinations, were postulated in 72 lines, whereas known resistance genes were not identified in the other 26 accessions. The resistance genes Yr9 and Yr26 were found in 42 and 19 accessions, respectively. Yr3a and Yr4a were detected in two lines, and four lines may contain Yr6. Three lines were postulated to possess YrSD, one carried Yr27, and one may possess Yr7. Thirty-three lines showed slow stripe rusting resistance at two locations in both seasons.

18.
Theor Appl Genet ; 112(3): 400-9, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16344983

RESUMEN

Kernel hardness that is conditioned by puroindoline genes has a profound effect on milling, baking and end-use quality of bread wheat. In this study, 219 landraces and 166 historical cultivars from China and 12 introduced wheats were investigated for their kernel hardness and puroindoline alleles, using molecular and biochemical markers. The results indicated that frequencies of soft, mixed and hard genotypes were 42.7, 24.3, and 33.0%, respectively, in Chinese landraces and 45.2, 13.9, and 40.9% in historical cultivars. The frequencies of PINA null, Pinb-D1b and Pinb-D1p genotypes were 43.8, 12.3, and 39.7%, respectively, in hard wheat of landraces, while 48.5, 36.8, and 14.7%, respectively, in historical hard wheats. A new Pinb-D1 allele, designated Pinb-D1t, was identified in two landraces, Guangtouxianmai and Hongmai from the Guizhou province, with the characterization of a glycine to arginine substitution at position 47 in the coding region of Pinb gene. Surprisingly, a new Pina-D1 allele, designated Pina-D1m, was detected in the landrace Hongheshang, from the Jiangsu province, with the characterization of a proline to serine substitution at position 35 in the coding region of Pina gene; it was the first novel mutation found in bread wheat, resulting in a hard endosperm with PINA expression. Among the PINA null genotypes, an allele designed as Pina-D1l, was detected in five landraces with a cytosine deletion at position 265 in Pina locus; while another novel Pina-D1 allele, designed as Pina-D1n, was identified in six landraces, with the characterization of an amino acid change from tryptophan-43 to a 'stop' codon in the coding region of Pina gene. The study of puroindoline polymorphism in Chinese wheat germplasm could provide useful information for the further understanding of the molecular basis of kernel hardness in bread wheat.


Asunto(s)
Alelos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Triticum/genética , Triticum/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Arginina/metabolismo , Secuencia de Bases , Biomarcadores , China , ADN de Plantas/química , ADN de Plantas/aislamiento & purificación , Electroforesis en Gel de Poliacrilamida , Eliminación de Gen , Frecuencia de los Genes , Genes de Plantas , Variación Genética , Genotipo , Datos de Secuencia Molecular , Proteínas de Plantas/química , Proteínas de Plantas/aislamiento & purificación , Polimorfismo Genético , Semillas/genética , Análisis de Secuencia de ADN , Serina/metabolismo , Especificidad de la Especie , Triticum/fisiología
19.
Plant Dis ; 89(5): 457-463, 2005 May.
Artículo en Inglés | MEDLINE | ID: mdl-30795421

RESUMEN

Powdery mildew, caused by Blumeria graminis f. sp. tritici, is a widespread wheat disease in China. Identification of race-specific genes and adult plant resistance (APR) is of major importance in breeding for an efficient genetic control strategy. The objectives of this study were to (i) identify genes that confer seedling resistance to powdery mildew in Chinese bread wheat cultivars and introductions used by breeding programs in China and (ii) evaluate their APR in the field. The results showed that (i) 98 of 192 tested wheat cultivars and lines appear to have one or more resistance genes to powdery mildew; (ii) Pm8 and Pm4b are the most common resistance genes in Chinese wheat cultivars, whereas Pm8 and Pm3d are present most frequently in wheat cultivars introduced from CIMMYT, the United States, and European countries; (iii) genotypes carrying Pm1, Pm3e, Pm5, and Pm7 were susceptible, whereas those carrying Pm12, Pm16, and Pm20 were highly resistant to almost all isolates of B. graminis f. sp. tritici tested; and (iv) 22 genotypes expressed APR. Our data showed that the area under the disease progress curve, maximum disease severity on the penultimate leaf, and the disease index are good indicators of the degree of APR in the field. It may be a good choice to combine major resistance genes and APR genes in wheat breeding to obtain effective resistance to powdery mildew.

20.
Theor Appl Genet ; 107(5): 947-57, 2003 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12830388

RESUMEN

Heterotic groups and patterns are of fundamental importance in hybrid breeding. The objectives of our research were to: (1) investigate the relationship of simple sequence repeats (SSR) based genetic distances between populations and panmictic midparent heterosis (PMPH) in a broad range of CIMMYT maize germplasm, (2) evaluate the usefulness of SSR markers for defining heterotic groups and patterns in subtropical germplasm, and (3) examine applications of SSR markers for broadening heterotic groups by systematic introgression of other germplasm. Published data of two diallels and one factorial evaluated for grain yield were re-analyzed to calculate the PMPH in population hybrids. Additionally, 20 pools and populations widely used in CIMMYT's breeding program were assayed with 83 SSR markers covering the entire maize genome. Correlations of squared modified Roger's distance (MRD(2)) and PMPH were mostly positive and significant, but adaption problems caused deviations in some cases. For intermediate- and early-maturity subtropical germplasm, two heterotic groups could be suggested consisting of a flint and dent composite. We concluded that the relationships between the populations obtained by SSR analyses are in excellent agreement with pedigree information. SSR markers are a valuable complementation to field trials for identifying heterotic groups and can be used to introgress exotic germplasm systematically.


Asunto(s)
Variación Genética , Secuencias Repetitivas de Ácidos Nucleicos , Zea mays/genética , Alelos , Fenotipo , Zea mays/clasificación , Zea mays/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...