Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int Immunopharmacol ; 132: 111984, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38565043

RESUMEN

Periodontitis is a chronic inflammatory disease with the destruction of supporting periodontal tissue. This study evaluated the role of insulin-like growth factor 2 (IGF2) in periodontitis by inhibiting the polarization of M1 macrophages via the cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes (STING) pathway. IGF2 was enriched in the gingival tissue of murine periodontitis model identified by RNA sequencing. IGF2 application alleviated the expression of pro-inflammatory factors and promoted osteogenesis and the expression of related genes and proteins in a dose-dependent manner in periodontitis. The result of micro-CT verified this finding. Both in vivo and in vitro results revealed that IGF2 decreased the polarization of M1 macrophages and pro-inflammatory factors by immunofluorescence staining, flow cytometry, western blotting and RT-PCR. IGF2 application promoted the osteogenic ability of periodontal ligament fibroblasts (PDLFs) indirectly via its inhibition of M1 polarization evaluated by alkaline phosphatase and alizarin red staining. Then, the cGAS/STING pathway was upregulated in periodontitis and macrophages challenged by LPS, the inhibition of which led to downregulation of M1 polarization. Furthermore, IGF2 could downregulate cGAS, STING and the phosphorylation of P65. Collectively, our study indicates IGF2 can regulate the polarization of M1 macrophages via the cGAS/STING pathway and highlights the promising future of IGF2 as a therapeutic treatment for periodontitis.


Asunto(s)
Factor II del Crecimiento Similar a la Insulina , Macrófagos , Proteínas de la Membrana , Nucleotidiltransferasas , Periodontitis , Animales , Humanos , Masculino , Ratones , Regeneración Ósea/efectos de los fármacos , Células Cultivadas , Modelos Animales de Enfermedad , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Factor II del Crecimiento Similar a la Insulina/metabolismo , Macrófagos/inmunología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Ratones Endogámicos C57BL , Nucleotidiltransferasas/metabolismo , Osteogénesis/efectos de los fármacos , Ligamento Periodontal/metabolismo , Ligamento Periodontal/citología , Ligamento Periodontal/patología , Periodontitis/inmunología , Periodontitis/metabolismo , Periodontitis/tratamiento farmacológico , Transducción de Señal
2.
Sci Rep ; 14(1): 5670, 2024 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-38453979

RESUMEN

The GPT-4 large language model (LLM) and ChatGPT chatbot have emerged as accessible and capable tools for generating English-language text in a variety of formats. GPT-4 has previously performed well when applied to questions from multiple standardized examinations. However, further evaluation of trustworthiness and accuracy of GPT-4 responses across various knowledge domains is essential before its use as a reference resource. Here, we assess GPT-4 performance on nine graduate-level examinations in the biomedical sciences (seven blinded), finding that GPT-4 scores exceed the student average in seven of nine cases and exceed all student scores for four exams. GPT-4 performed very well on fill-in-the-blank, short-answer, and essay questions, and correctly answered several questions on figures sourced from published manuscripts. Conversely, GPT-4 performed poorly on questions with figures containing simulated data and those requiring a hand-drawn answer. Two GPT-4 answer-sets were flagged as plagiarism based on answer similarity and some model responses included detailed hallucinations. In addition to assessing GPT-4 performance, we discuss patterns and limitations in GPT-4 capabilities with the goal of informing design of future academic examinations in the chatbot era.


Asunto(s)
Educación de Postgrado , Alucinaciones , Humanos , Conocimiento , Lenguaje , Estudiantes
4.
Nanomicro Lett ; 16(1): 58, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38112845

RESUMEN

Highly thermally conductive graphitic film (GF) materials have become a competitive solution for the thermal management of high-power electronic devices. However, their catastrophic structural failure under extreme alternating thermal/cold shock poses a significant challenge to reliability and safety. Here, we present the first investigation into the structural failure mechanism of GF during cyclic liquid nitrogen shocks (LNS), which reveals a bubbling process characterized by "permeation-diffusion-deformation" phenomenon. To overcome this long-standing structural weakness, a novel metal-nanoarmor strategy is proposed to construct a Cu-modified graphitic film (GF@Cu) with seamless heterointerface. This well-designed interface ensures superior structural stability for GF@Cu after hundreds of LNS cycles from 77 to 300 K. Moreover, GF@Cu maintains high thermal conductivity up to 1088 W m-1 K-1 with degradation of less than 5% even after 150 LNS cycles, superior to that of pure GF (50% degradation). Our work not only offers an opportunity to improve the robustness of graphitic films by the rational structural design but also facilitates the applications of thermally conductive carbon-based materials for future extreme thermal management in complex aerospace electronics.

5.
FASEB J ; 37(11): e23226, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37815505

RESUMEN

T-cell-mediated immunity is crucial in the immunopathology of periodontitis. The restoration of the homeostasis between the T helper cell 17 (Th17) and regulatory T cell (Treg) subsets by extracellular vesicles (EVs) obtained from human bone marrow stem cells (hBMSCs) promotes new bone formation and suppresses inflammation. Uncovering the functions of hBMSC-derived EVs in the immune microenvironment of periodontal tissue and their underlying regulatory mechanisms may shed new light on developing potential cell-free immunotherapies for periodontal regeneration. Here, we reported that the Th17/Treg ratio elevated in peripheral blood from periodontitis patients. Furthermore, we found that hBMSC-derived EVs could reduce the Th17/Treg ratio in CD4+ T cells from periodontitis patients in vitro and ameliorate conditions of experimental periodontitis in mice. Additionally, by investigating the differentially expressed miRNAs and target genes in EVs from hBMSCs stimulated with Porphyromonas gingivalis LPS using miRNA sequencing, we found that EV-miR-1246 is highly effective at downregulating the ratio of Th17/Treg in vitro. Mechanistically, EV-miR-1246 suppressed expression of its potential target angiotensin-converting enzyme 2 (ACE2) and increased the p-Yes-associated protein (YAP)1/YAP1 ratio in CD4+ T cells. Our results indicated that hBMSC-derived EVs improve periodontitis via miR-1246, consequently downregulating Th17/Treg ratio, and represented a promising therapeutic target for precision treatment in periodontitis.


Asunto(s)
Vesículas Extracelulares , Células Madre Mesenquimatosas , MicroARNs , Periodontitis , Humanos , Animales , Ratones , Linfocitos T Reguladores , MicroARNs/genética , Periodontitis/terapia , Células Th17 , Proteínas Adaptadoras Transductoras de Señales/genética , Homeostasis
6.
Nat Commun ; 14(1): 5015, 2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37596259

RESUMEN

Wet-chemical synthesis via heating bulk solution is powerful to obtain nanomaterials. However, it still suffers from limited reaction rate, controllability, and massive consumption of energy/reactants, particularly for the synthesis on specific substrates. Herein, we present an innovative wet-interfacial Joule heating (WIJH) approach to synthesize various nanomaterials in a sub-second ultrafast, programmable, and energy/reactant-saving manner. In the WIJH, Joule heat generated by the graphene film (GF) is confined at the substrate-solution interface. Accompanied by instantaneous evaporation of the solvent, the temperature is steeply improved and the precursors are concentrated, thereby synergistically accelerating and controlling the nucleation and growth of nanomaterials on the substrate. WIJH leads to a record high crystallization rate of HKUST-1 (~1.97 µm s-1), an ultralow energy cost (9.55 × 10-6 kWh cm-2) and low precursor concentrations, which are up to 5 orders of magnitude faster, -6 and -2 orders of magnitude lower than traditional methods, respectively. Moreover, WIJH could handily customize the products' amount, size, and morphology via programming the electrified procedures. The as-prepared HKUST-1/GF enables the Joule-heating-controllable and low-energy-required capture and liberation towards CO2. This study opens up a new methodology towards the superefficient synthesis of nanomaterials and solvent-involved Joule heating.

7.
Front Neurosci ; 17: 1181804, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37304025

RESUMEN

Tauopathies are a group of neurodegenerative diseases, which include frontotemporal dementia (FTD) and Alzheimer's disease (AD), broadly defined by the development of tau brain aggregates. Both missense and splicing tau mutations can directly cause early onset FTD. Tau protein is a microtubule-associated protein that stabilizes and regulates microtubules, but this function can be disrupted in disease states. One contributing factor is the balance of different tau isoforms, which can be categorized into either three repeat (3R) or four repeat (4R) isoforms based on the number of microtubule-binding repeats that are expressed. Imbalance of 3R and 4R isoforms in either direction can cause FTD and neurodegeneration. There is also increasing evidence that 3R tauopathies such as Pick's disease form tau aggregates predominantly comprised of 3R isoforms and these can present differently from 4R and mixed 3R/4R tauopathies. In this study, multiple mutations in 3R tau were assessed for MT binding properties and prion-like aggregation propensity. Different missense tau mutations showed varying effects on MT binding depending on molecular location and properties. Of the mutations that were surveyed, S356T tau is uniquely capable of prion-like seeded aggregation and forms extensive Thioflavin positive aggregates. This unique prion-like tau strain will be useful to model 3R tau aggregation and will contribute to the understanding of diverse presentations of different tauopathies.

8.
J Biol Chem ; 299(7): 104912, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37307916

RESUMEN

α-synuclein (αS) is an abundant, neuronal protein that assembles into fibrillar pathological inclusions in a spectrum of neurodegenerative diseases that include Lewy body diseases (LBD) and Multiple System Atrophy (MSA). The cellular and regional distributions of pathological inclusions vary widely between different synucleinopathies contributing to the spectrum of clinical presentations. Extensive cleavage within the carboxy (C)-terminal region of αS is associated with inclusion formation, although the events leading to these modifications and the implications for pathobiology are of ongoing study. αS preformed fibrils can induce prion-like spread of αS pathology in both in vitro and animal models of disease. Using C truncation-specific antibodies, we demonstrated here that prion-like cellular uptake and processing of αS preformed fibrils resulted in two major cleavages at residues 103 and 114. A third cleavage product (122 αS) accumulated upon application of lysosomal protease inhibitors. In vitro, both 1-103 and 1-114 αS polymerized rapidly and extensively in isolation and in the presence of full-length αS. 1-103 αS also demonstrated more extensive aggregation when expressed in cultured cells. Furthermore, we used novel antibodies to αS cleaved at residue Glu114, to assess x-114 αS pathology in postmortem brain tissue from patients with LBD and MSA, as well as three different transgenic αS mouse models of prion-like induction. The distribution of x-114 αS pathology was distinct from that of overall αS pathology. These studies reveal the cellular formation and behavior of αS C-truncated at residues 114 and 103 as well as the disease dependent distribution of x-114 αS pathology.


Asunto(s)
Enfermedad por Cuerpos de Lewy , Atrofia de Múltiples Sistemas , alfa-Sinucleína , Animales , Ratones , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Ratones Transgénicos , Atrofia de Múltiples Sistemas/metabolismo , Atrofia de Múltiples Sistemas/patología , Priones/química , Priones/metabolismo , Humanos , Lisosomas/enzimología , Inhibidores de Proteasas , Enfermedad por Cuerpos de Lewy/metabolismo , Enfermedad por Cuerpos de Lewy/patología , Autopsia , Ácido Glutámico/metabolismo
9.
Int J Mol Sci ; 24(9)2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-37175990

RESUMEN

Alzheimer's disease (AD) and frontotemporal dementia (FTD) can be classified as tauopathies, which are a group of neurodegenerative diseases that develop toxic tau aggregates in specific brain regions. These pathological tau inclusions are altered by various post-translational modifications (PTMs) that include phosphorylation, acetylation, and methylation. Tau methylation has emerged as a target of interest for its potential involvement in tau pathomechanisms. Filamentous tau aggregates isolated from patients with AD are methylated at multiple lysine residues, although the exact methyltransferases have not been identified. One strategy to study the site-specific effects of methylation is to create methylation mimetics using a KFC model, which replaces lysine (K) with a hydrophobic group such as phenylalanine (F) to approximate the effects of lysine methylation (C or methyl group). In this study, tau methylmimetics were used to model several functional aspects of tau methylation such as effects on microtubule binding and tau aggregation in cell models. Overall, several tau methylmimetics displayed impaired microtubule binding, and tau methylmimetics enhanced prion-like seeded aggregation in the context of the FTD tau mutation P301L. Like other PTMs, tau methylation is a contributing factor to tau pathogenesis and could be a potential therapeutic drug target for the treatment of different tauopathies.


Asunto(s)
Enfermedad de Alzheimer , Demencia Frontotemporal , Enfermedad de Pick , Priones , Tauopatías , Humanos , Proteínas tau/metabolismo , Lisina/metabolismo , Priones/metabolismo , Demencia Frontotemporal/genética , Demencia Frontotemporal/metabolismo , Enfermedad de Alzheimer/metabolismo , Tauopatías/metabolismo , Enfermedad de Pick/metabolismo , Microtúbulos/metabolismo
10.
Nanomicro Lett ; 15(1): 61, 2023 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-36867262

RESUMEN

Bulk graphene nanofilms feature fast electronic and phonon transport in combination with strong light-matter interaction and thus have great potential for versatile applications, spanning from photonic, electronic, and optoelectronic devices to charge-stripping and electromagnetic shielding, etc. However, large-area flexible close-stacked graphene nanofilms with a wide thickness range have yet to be reported. Here, we report a polyacrylonitrile-assisted 'substrate replacement' strategy to fabricate large-area free-standing graphene oxide/polyacrylonitrile nanofilms (lateral size ~ 20 cm). Linear polyacrylonitrile chains-derived nanochannels promote the escape of gases and enable macro-assembled graphene nanofilms (nMAGs) of 50-600 nm thickness following heat treatment at 3,000 °C. The uniform nMAGs exhibit 802-1,540 cm2 V-1 s-1 carrier mobility, 4.3-4.7 ps carrier lifetime, and > 1,581 W m-1 K-1 thermal conductivity (nMAG-assembled 10 µm-thick films, mMAGs). nMAGs are highly flexible and show no structure damage even after 1.0 × 105 cycles of folding-unfolding. Furthermore, nMAGs broaden the detection region of graphene/silicon heterojunction from near-infrared to mid-infrared and demonstrate higher absolute electromagnetic interference (EMI) shielding effectiveness than state-of-the-art EMI materials of the same thickness. These results are expected to lead to the broad applications of such bulk nanofilms, especially as micro/nanoelectronic and optoelectronic platforms.

11.
Bone ; 168: 116648, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36563716

RESUMEN

Osteoporosis induced by disuse because of bed rest or the aerospace industry has become one of the most common skeletal disorders. However, mechanisms underlying the disuse osteoporosis remain largely unknown. We validated the tail-suspended model in mice and demonstrated that there is bone loss in the trabecular and cortical bones of the femur. Importantly, we showed that genetical deletion of hypoxia-inducible factor-1α (HIF-1α) in osteoclasts ameliorated osteoclastic bone resorption in the trabecular bone whereas pharmacological treatment with HIF-1α inhibitor protected the hindlimb-unloaded mice from disuse-induced osteoporosis in the trabecular and cortical bones. The HIF-1α knockout RAW264.7 cells and RNA-sequencing proved that HIF-1α is vital for osteoclastogenesis and bone resorption because it regulated the level of inosine monophosphate dehydrogenase (IMPDH) and cytidine triphosphate synthetase (CTPS) via cellular myelocytomatosis (c-Myc) oncogene. The IMPDH and CTPS are vital nucleotide metabolic enzymes which have an important functional role in cell metabolism, and they can assemble into intracellular linear or ring-shaped structures to cope with cell stress. Interestingly, both in vitro and in vivo, the IMPDH and CTPS cytoophidia were found in osteoclasts, and the level of HIF-1α correlated with osteoclastogenesis and bone-resorbing activity. Our data revealed that HIF-1α/c-Myc/cytoophidia signalling might be required for osteoclasts to mediate cell metabolism in disuse-induced osteoporosis. Overall, our results revealed a new role of HIF-1α/c-Myc/cytoophidia in supporting osteoclastogenesis and bone resorption and exposed evidence for its role in the pathogenesis of disuse osteoporosis, which might provide promising therapeutic targets.


Asunto(s)
Resorción Ósea , Subunidad alfa del Factor 1 Inducible por Hipoxia , Osteoporosis , Animales , Ratones , Resorción Ósea/patología , Fémur/patología , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Osteoclastos/metabolismo , Osteoporosis/patología
13.
Commun Biol ; 5(1): 446, 2022 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-35550593

RESUMEN

Pathological tau inclusions are neuropathologic hallmarks of many neurodegenerative diseases. We generated and characterized a transgenic mouse model expressing pathogenic human tau with S320F and P301S aggregating mutations (SPAM) at transgene levels below endogenous mouse tau protein levels. This mouse model develops a predictable temporal progression of tau pathology in the brain with biochemical and ultrastructural properties akin to authentic tau inclusions. Surprisingly, pathogenic human tau extensively recruited endogenous mouse tau into insoluble aggregates. Despite the early onset and rapid progressive nature of tau pathology, major neuroinflammatory and transcriptional changes were only detectable at later time points. Moreover, tau SPAM mice are the first model to develop loss of enteric neurons due to tau accumulation resulting in a lethal phenotype. With moderate transgene expression, rapidly progressing tau pathology, and a highly predictable lethal phenotype, the tau SPAM model reveals new associations of tau neurotoxicity in the brain and intestinal tract.


Asunto(s)
Encéfalo , Proteínas tau , Animales , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Transgénicos , Mutación , Neuronas/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo
14.
Essays Biochem ; 65(7): 905-912, 2021 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-34846537

RESUMEN

CNS pathological inclusions comprising τ or α-synuclein (αSyn) define a spectrum of neurodegenerative diseases, and these can often present concurrently in the same individuals. The aggregation of both proteins is clearly associated with neurodegeneration and the deleterious properties of each protein is further supported by mutations in each gene (MAPT and SNCA, respectively) resulting in disease. The initiating events in most sporadic neurodegenerative diseases are still unclear but growing evidence suggests that the aberrant proteolytic cleavage of τ and αSyn results in products that can be toxic and/or initiate aggregation that can further spread by a prion-like mechanism. The accumulation of some of these cleavage products can further potentiate the progression of protein aggregation transmission and lead to their accumulation in peripheral biofluids such as cerebrospinal fluid (CSF) and blood. The future development of new tools to detect specific τ and αSyn abnormal cleavage products in peripheral biofluids could be useful biomarkers and better understand of the role of unique proteolytic activities could yield therapeutic interventions.


Asunto(s)
Enfermedades Neurodegenerativas , Priones , Expresión Génica , Humanos , Enfermedades Neurodegenerativas/metabolismo , Priones/metabolismo , Proteolisis , alfa-Sinucleína/líquido cefalorraquídeo , alfa-Sinucleína/genética , Proteínas tau/líquido cefalorraquídeo , Proteínas tau/genética
15.
Mol Neurodegener ; 16(1): 63, 2021 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-34503546

RESUMEN

BACKGROUND: The misfolding of host-encoded proteins into pathological prion conformations is a defining characteristic of many neurodegenerative disorders, including Alzheimer's disease, Parkinson's disease, and Lewy body dementia. A current area of intense study is the way in which the pathological deposition of these proteins might influence each other, as various combinations of co-pathology between prion-capable proteins are associated with exacerbation of disease. A spectrum of pathological, genetic and biochemical evidence provides credence to the notion that amyloid ß (Aß) accumulation can induce and promote α-synuclein pathology, driving neurodegeneration. METHODS: To assess the interplay between α-synuclein and Aß on protein aggregation kinetics, we crossed mice expressing human α-synuclein (M20) with APPswe/PS1dE9 transgenic mice (L85) to generate M20/L85 mice. We then injected α-synuclein preformed fibrils (PFFs) unilaterally into the hippocampus of 6-month-old mice, harvesting 2 or 4 months later. RESULTS: Immunohistochemical analysis of M20/L85 mice revealed that pre-existing Aß plaques exacerbate the spread and deposition of induced α-synuclein pathology. This process was associated with increased neuroinflammation. Unexpectedly, the injection of α-synuclein PFFs in L85 mice enhanced the deposition of Aß; whereas the level of Aß deposition in M20/L85 bigenic mice, injected with α-synuclein PFFs, did not differ from that of mice injected with PBS. CONCLUSIONS: These studies reveal novel and unexpected interplays between α-synuclein pathology, Aß and neuroinflammation in mice that recapitulate the pathology of Alzheimer's disease and Lewy body dementia.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Demencia/metabolismo , Modelos Animales de Enfermedad , Agregación Patológica de Proteínas , alfa-Sinucleína/metabolismo , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Animales , Astrocitos/metabolismo , Astrocitos/patología , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Cruzamientos Genéticos , Demencia/patología , Gliosis/metabolismo , Gliosis/patología , Hipocampo/metabolismo , Hipocampo/patología , Humanos , Inyecciones , Enfermedad por Cuerpos de Lewy/metabolismo , Enfermedad por Cuerpos de Lewy/patología , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Ratones Transgénicos , Enfermedades Neuroinflamatorias , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Priones/química , Agregado de Proteínas , Proteínas Recombinantes/metabolismo , alfa-Sinucleína/toxicidad
16.
Sci Rep ; 11(1): 17069, 2021 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-34426645

RESUMEN

Alzheimer's disease is the leading cause of dementia and a defining hallmark is the progressive brain deposition of tau aggregates. The insidious accumulation of brain tau inclusions is also involved in a group of neurodegenerative diseases termed frontotemporal dementias. In all of these disorders, tau aggregates are enriched in post-translational modifications including acetylation, which has recently been identified at multiple sites. While most evidence suggest that tau acetylation is detrimental and promotes tau aggregation, a few studies support that tau acetylation within the KXGS motif can be protective and inhibit tau aggregation. To model site-specific acetylation at K259, K290, K321, and K353, acetylmimetics were created by mutating lysine to glutamine residues, which approximates size and charge of acetylation. HEK293T cells were transfected to express wild type tau, tau pathogenic mutations (P301L and P301L/S320F) or tau acetylmimetics and assessed by cell-based assays for microtubule binding and tau aggregation. Acetylmimetics within the KXGS motif (K259Q, K290Q, K321Q, K353Q) leads to significant decreased tau-microtubule interactions. Acetylmimetics K321Q and K353Q within the context of the pathogenic P301L tau mutation strongly inhibited prion-like seeded aggregation. This protective effect was confirmed to decrease intrinsic aggregation of P301L/S320F tau double mutation. Surprisingly, K321Q and K353Q acetylmimetics altered the conformational structure of P301L/S320F tau to extensively impair Thioflavin S binding. Site-specific acetylation of tau at K321 and K353 could represent a natural protective mechanism against tau aggregation and could be a potential therapeutic target.


Asunto(s)
Microtúbulos/metabolismo , Multimerización de Proteína , Procesamiento Proteico-Postraduccional , Proteínas tau/metabolismo , Acetilación , Secuencias de Aminoácidos , Células HEK293 , Humanos , Mutación , Unión Proteica , Proteínas tau/química , Proteínas tau/genética
17.
Acta Neuropathol Commun ; 9(1): 146, 2021 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-34454615

RESUMEN

Synucleinopathies, including Parkinson's disease (PD), Lewy body dementia (LBD), Alzheimer's disease with amygdala restricted Lewy bodies (AD/ALB), and multiple system atrophy (MSA) comprise a spectrum of neurodegenerative disorders characterized by the presence of distinct pathological α-synuclein (αSyn) inclusions. Experimental and pathological studies support the notion that αSyn aggregates contribute to cellular demise and dysfunction with disease progression associated with a prion-like spread of αSyn aggregates via conformational templating. The initiating event(s) and factors that contribute to diverse forms of synucleinopathies remain poorly understood. A major post-translational modification of αSyn associated with pathological inclusions is a diverse array of specific truncations within the carboxy terminal region. While these modifications have been shown experimentally to induce and promote αSyn aggregation, little is known about their disease-, region- and cell type specific distribution. To this end, we generated a series of monoclonal antibodies specific to neo-epitopes in αSyn truncated after residues 103, 115, 119, 122, 125, and 129. Immunocytochemical investigations using these new tools revealed striking differences in the αSyn truncation pattern between different synucleinopathies, brain regions and specific cellular populations. In LBD, neuronal inclusions in the substantia nigra and amygdala were positive for αSyn cleaved after residues 103, 119, 122, and 125, but not 115. In contrast, in the same patients' brain αSyn cleaved at residue 115, as well as 103, 119 and 122 were abundant in the dorsal motor nucleus of the vagus. In patients with AD/ALB, these modifications were only weakly or not detected in amygdala αSyn inclusions. αSyn truncated at residues 103, 115, 119, and 125 was readily present in MSA glial cytoplasmic inclusions, but 122 cleaved αSyn was only weakly or not present. Conversely, MSA neuronal pathology in the pontine nuclei was strongly reactive to the αSyn x-122 neo-epitope but did not display any reactivity for αSyn 103 cleavage. These studies demonstrate significant disease-, region- and cell type specific differences in carboxy terminal αSyn processing associated with pathological inclusions that likely contributes to their distinct strain-like prion properties and promotes the diversity displayed in the degrees of these insidious diseases.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Anticuerpos Monoclonales/metabolismo , Enfermedad por Cuerpos de Lewy/metabolismo , Atrofia de Múltiples Sistemas/metabolismo , Sinucleinopatías/metabolismo , alfa-Sinucleína/metabolismo , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/patología , Amígdala del Cerebelo/metabolismo , Amígdala del Cerebelo/patología , Anticuerpos Monoclonales/química , Epítopos/química , Epítopos/metabolismo , Femenino , Humanos , Enfermedad por Cuerpos de Lewy/patología , Masculino , Persona de Mediana Edad , Atrofia de Múltiples Sistemas/patología , Sinucleinopatías/patología , Lóbulo Temporal/metabolismo , Lóbulo Temporal/patología , alfa-Sinucleína/química
18.
Mol Neurodegener ; 16(1): 37, 2021 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-34090488

RESUMEN

Phosphorylation is one of the most prevalent post-translational modifications found in aggregated tau isolated from Alzheimer's disease (AD) patient brains. In tauopathies like AD, increased phosphorylation or hyperphosphorylation can contribute to microtubule dysfunction and is associated with tau aggregation. In this review, we provide an overview of the structure and functions of tau protein as well as the physiologic roles of tau phosphorylation. We also extensively survey tau phosphorylation sites identified in brain tissue and cerebrospinal fluid from AD patients compared to age-matched healthy controls, which may serve as disease-specific biomarkers. Recently, new assays have been developed to measure minute amounts of specific forms of phosphorylated tau in both cerebrospinal fluid and plasma, which could potentially be useful for aiding clinical diagnosis and monitoring disease progression. Additionally, multiple therapies targeting phosphorylated tau are in various stages of clinical trials including kinase inhibitors, phosphatase activators, and tau immunotherapy. With promising early results, therapies that target phosphorylated tau  could be useful at slowing tau hyperphosphorylation and aggregation in AD and other tauopathies.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Biomarcadores/metabolismo , Proteínas tau/metabolismo , Humanos , Fosforilación , Procesamiento Proteico-Postraduccional
19.
J Neurochem ; 158(2): 455-466, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33772783

RESUMEN

Tauopathies are a group of heterogeneous neurodegenerative disorders characterized by brain deposition of tau inclusions. These insidious disorders include Alzheimer's disease and frontotemporal dementia, the two leading causes of dementia. Mutations in the microtubule-associated protein tau (MAPT) gene lead to familial forms of frontotemporal dementia. Previously, we used cell-based assays to screen over 20 missense tau mutations and found that decreased microtubule (MT) binding affinity was the most shared property. As a break from this trend, the MAPT mutations Q336H and Q336R are thought to promote MT assembly rather than inhibit it based on in vitro studies. Q336H and Q336R MAPT mutations also cause early onset frontotemporal dementia with Pick bodies, which are mostly composed of 3R tau isoforms. To provide further insights on the pathobiology of these mutations, we assessed Q336H and Q336R tau mutants for aggregation propensity and MT binding in cell-based assays in the context of both 0N3R and 0N4R tau isoforms. Q336R tau was prone to prion-like seeded aggregation but both Q336H and Q336R tau led to increased MT binding. Additionally, we found that different tau isoforms with these mutations heterogeneously regulate different MT subpopulations of tyrosinated and acetylated MTs, markers of newly formed MTs and stable MTs. The Q336H and Q336R tau mutations may exemplify an alternative mechanism where pathogenic tau can bind MTs with higher affinity and hyperstabilize MTs, which prevent proper MT regulation and homeostasis.


Asunto(s)
Microtúbulos/genética , Tauopatías/genética , Proteínas tau/genética , Demencia Frontotemporal/genética , Células HEK293 , Humanos , Isomerismo , Mutagénesis Sitio-Dirigida , Mutación/genética , Enfermedad de Pick/genética , Procesamiento Proteico-Postraduccional , Proteínas tau/química
20.
Virol J ; 18(1): 66, 2021 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-33781287

RESUMEN

Beginning in late 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged as a novel pathogen that causes coronavirus disease 2019 (COVID-19). SARS-CoV-2 has infected more than 111 million people worldwide and caused over 2.47 million deaths. Individuals infected with SARS-CoV-2 show symptoms of fever, cough, dyspnea, and fatigue with severe cases that can develop into pneumonia, myocarditis, acute respiratory distress syndrome, hypercoagulability, and even multi-organ failure. Current clinical management consists largely of supportive care as commonly administered treatments, including convalescent plasma, remdesivir, and high-dose glucocorticoids. These have demonstrated modest benefits in a small subset of hospitalized patients, with only dexamethasone showing demonstrable efficacy in reducing mortality and length of hospitalization. At this time, no SARS-CoV-2-specific antiviral drugs are available, although several vaccines have been approved for use in recent months. In this review, we will evaluate the efficacy of preclinical and clinical drugs that precisely target three different, essential steps of the SARS-CoV-2 replication cycle: the spike protein during entry, main protease (MPro) during proteolytic activation, and RNA-dependent RNA polymerase (RdRp) during transcription. We will assess the advantages and limitations of drugs that precisely target evolutionarily well-conserved domains, which are less likely to mutate, and therefore less likely to escape the effects of these drugs. We propose that a multi-drug cocktail targeting precise proteins, critical to the viral replication cycle, such as spike protein, MPro, and RdRp, will be the most effective strategy of inhibiting SARS-CoV-2 replication and limiting its spread in the general population.


Asunto(s)
Antivirales/uso terapéutico , Tratamiento Farmacológico de COVID-19 , SARS-CoV-2/efectos de los fármacos , Animales , Antivirales/farmacología , COVID-19/prevención & control , COVID-19/terapia , COVID-19/virología , Vacunas contra la COVID-19/administración & dosificación , Proteasas 3C de Coronavirus/metabolismo , Humanos , Inmunización Pasiva , ARN Polimerasa Dependiente del ARN/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Internalización del Virus/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Sueroterapia para COVID-19
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...