Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 7691, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39227576

RESUMEN

Copper (Cu)-based catalysts show promise for electrocatalytic CO2 reduction (CO2RR) to multi-carbon alcohols, but thermodynamic constraints lead to competitive hydrocarbon (e.g., ethylene) production. Achieving selective ethanol production with high Faradaic efficiency (FE) and current density is still challenging. Here we show a multivalent Cu-based catalyst, Cu-2,3,7,8-tetraaminophenazine-1,4,6,9-tetraone (Cu-TAPT) with Cu2+ and Cu+ atomic ratio of about 1:2 for CO2RR. Cu-TAPT exhibits an ethanol FE of 54.3 ± 3% at an industrial-scale current density of 429 mA cm-2, with the ethanol-to-ethylene ratio reaching 3.14:1. Experimental and theoretical calculations collectively unveil that the catalyst is stable during CO2RR, resulting from suitable coordination of the Cu2+ and Cu+ with the functional groups in TAPT. Additionally, mechanism studies show that the increased ethanol selectivity originates from synergy of multivalent Cu sites, which can promote asymmetric C-C coupling and adjust the adsorption strength of different carbonaceous intermediates, favoring hydroxy-containing C2 intermediate (*HCCHOH) formation and formation of ethanol.

2.
Nat Commun ; 15(1): 1109, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38321049

RESUMEN

Upcycling of CO2 into fuels by virtually unlimited solar energy provides an ultimate solution for addressing the substantial challenges of energy crisis and climate change. In this work, we report an efficient nanostructured Ru/MnOx catalyst composed of well-defined Ru/MnO/Mn3O4 for photo-thermal catalytic CO2 hydrogenation to CH4, which is the result of a combination of external heating and irradiation. Remarkably, under relatively mild conditions of 200 °C, a considerable CH4 production rate of 166.7 mmol g-1 h-1 was achieved with a superior selectivity of 99.5% at CO2 conversion of 66.8%. The correlative spectroscopic and theoretical investigations suggest that the yield of CH4 is enhanced by coordinating photon energy with thermal energy to reduce the activation energy of reaction and promote formation of key intermediate COOH* species over the catalyst. This work opens up a new strategy for CO2 hydrogenation toward CH4.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...