Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Water Res ; 232: 119651, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36731203

RESUMEN

Fluoroquinolone antibiotics (FQs) have been widely detected in the sediments due to vast production and consumption. In this study, the transformation of FQs was investigated in the presence of sediment mackinawite (FeS) under ambient conditions. Moreover, the role of dissolved oxygen was evaluated for the enhanced degradation of FQs induced by FeS. Our results demonstrated that typical FQs (i.e., flumequine, enrofloxacin and ciprofloxacin) could be efficiently adsorbed and degraded by FeS under neutral pH conditions. As indicated by the results of electron paramagnetic resonance analysis (EPR) and free radicals quenching experiments, hydroxyl radical and superoxide radical anions were identified as the dominant reactive species responsible for FQs degradation. Based on the results of product analysis and theoretical calculation, the degradation of FQs mainly occurred at the piperazine ring and quinolone structure. Our results show that FQs could be efficiently removed by FeS, which benefits understanding the transformation of antibiotics in the sediments, and even sheds light on the remediation of organic pollutants contaminated soils.


Asunto(s)
Fluoroquinolonas , Contaminantes Químicos del Agua , Fluoroquinolonas/metabolismo , Antibacterianos/química , Ciprofloxacina/química , Oxidación-Reducción , Contaminantes Químicos del Agua/química
2.
J Hazard Mater ; 421: 126634, 2022 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-34330077

RESUMEN

Developing sheet-on-sheet (2D/2D) heterostructure with built-in electric field (BIEF) is effective in boosting the performance of photocatalysts for emerging contaminants degradation. Herein, the 2D/2D microtopography and (-)TiO2/(+)Bi2MoO6 BIEF were precisely integrated into hierarchical nanosheets, which can provide the basis and driving force for charge transfer both in in-plane and interface of heterojunction. The prepared photocatalyst (TiO2/Bi2MoO6) showed high-efficiency and stable performance for photocatalytic amoxicillin (AMX) degradation, which was 18.2 and 5.7 times higher than TiO2 and Bi2MoO6, respectively. More importantly, TiO2/Bi2MoO6 showed more efficient photocatalytic activity and photogenerated charge separation than TiO2@Bi2MoO6 (different morphology). Besides, four possible pathways of AMX degradation were proposed depending on Gaussian calculations and intermediates analysis by GC-MS and HPLC-TOFMS. This work sheds light on the design and construction of unique 2D/2D heterostructure photocatalysts for AMX degradation.


Asunto(s)
Amoxicilina , Bismuto , Catálisis , Molibdeno , Titanio
3.
Water Res ; 206: 117732, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34637972

RESUMEN

Microplastics (MPs) have been recognized as a global concern due to their potential health effect, as MPs could adsorb and carry various pollutants in aquatic environment. In the present study, a new environmental behavior related to polyvinyl chloride microplastics (PVC-MPs) and the underlying mechanism were described. Our results showed that the photo-aged PVC-MPs could affect the transformation of cephalosporin antibiotics. For instance, the presence of altered PVC-MPs significantly accelerated the hydrolysis of cefazolin (CFZ), but exhibited negligible effect on the degradation of cephalexin (CFX). As indicated by in situ Fourier transform infrared spectra and theoretical calculations, hydrogen bonds could be formed between ß-lactam carbonyl of CFZ and the oxygen-containing moieties on the aged PVC-MP surfaces. The hydrogen-bonding was able to significantly increase the positive atomic Mulliken charge on the ß-lactam carbonyl carbon, thus narrowing the energy gap of CFZ hydrolysis and subsequently enhancing the disruption of ß-lactam ring. While for CFX, instead of the ß-lactam carbonyl, the amide amino group was involved in the hydrogen-bonding due to the structural difference. Therefore, in addition to increasing the adsorption capacity, the aged PVC-MPs could act as the catalyst to mediate the transformation of antibiotics. Our study would help improve the understanding for interactions between contaminants and MPs in natural environments.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Adsorción , Cefalosporinas , Plásticos , Cloruro de Polivinilo , Contaminantes Químicos del Agua/análisis
4.
Water Res ; 191: 116797, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33422976

RESUMEN

In this study, a new photo-irradiated reductive dechlorination pathway and the underlying transformation mechanism are described for poly(vinyl chloride) microplastics (PVC-MPs). PVC-MPs underwent photo-reductive dechlorination process with the release of chloride ions. This reaction could be facilitated in the presence of indole-3-acetic acid (IAA) and hexadecyltrimethylammonium bromide (CTAB) under neutral pH and simulated sunlight irradiation conditions. Electrostatic interaction between IAA and CTAB produced neutral IAA/CTAB complex, which might account for the enhanced adsorption of IAA on PVC powders. Upon photo-irradiation, the adsorbed IAA was excited to generate hydrated electrons (eaq-), which could pass through a shorter distance to PVC-MP surface than that derived from homogeneous IAA molecules in aqueous solution. Transient spectra of laser flash photolysis provided direct evidence for the generation of eaq-, which supported the proposed dechlorination mechanism. Based on the results of attenuated total reflectance/Fourier transform infrared (ATR/FTIR) and Raman spectra, C-Cl bond cleavage and polyene formation were involved in the structural transformation of PVC-MPs. Due to the hydrophobic effects and π-π interactions between aromatic rings and polyene structures in PVC-MP surface, the PVC-MP powders irradiated in the presence of IAA/CTAB showed an enhanced sorption for both hydrophobic and hydrophilic aromatic chemicals.


Asunto(s)
Microplásticos , Cloruro de Vinilo , Electrones , Ácidos Indolacéticos , Plásticos , Cloruro de Polivinilo , Tensoactivos
5.
J Environ Sci (China) ; 99: 110-118, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33183688

RESUMEN

Over the recent past, fluoroquinolone antibiotics (FQs) have raised extensive attention due to their potential to induce the formation of resistance genes and "superbugs", thus various advanced oxidation techniques have been developed to eliminate their release into the environment. In the present study, the prototype tetraamido macrocyclic ligand (FeIII-TAML)/hydrogen peroxide (H2O2) system is employed to degrade FQs (i.e., norfloxacin and ciprofloxacin) over a wide pH range (i.e., pH 6-10), and the reaction rate increases with the increase in pH level. The effect of dosage of FeIII-TAML and H2O2 on the degradation of FQs is evaluated, and the reaction rate is linearly correlated with the added amount of chemicals. Moreover, the impact of natural organic matters (NOM) on the removal of FQs is investigated, and the degradation kinetics show that both NOM type and experimental concentration exhibit negligible influence on the oxidative degradation of selected antibiotics. Based on the results of liquid chromatography-high resolution mass spectrometry and theoretical calculations, the reaction sites and pathways of FQs by FeIII-TAML/H2O2 system are further predicted and elucidated.


Asunto(s)
Peróxido de Hidrógeno , Contaminantes Químicos del Agua , Antibacterianos , Compuestos Férricos , Fluoroquinolonas , Oxidación-Reducción
6.
Chemosphere ; 261: 127704, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32721690

RESUMEN

Iron(III)-tetraamidomacrocyclic ligand (Fe(III)-TAML) activators can activate hydrogen peroxide to oxidize many kinds of organic pollutants. In this study, we investigated the degradation of triclosan, a widely used broad-spectrum bactericide, under the treatment of Fe(III)-TAML/H2O2 system at different pH conditions. We also studied the influence of natural organic matter (NOM) on the degradation process. Our results showed that complete removal of triclosan could be obtained within several minutes under the optimal conditions. The degradation of triclosan by Fe(III)-TAML/H2O2 system exhibited strong pH-dependence and the degradation rate increased with the increase in pH level from 7.0 to 10.0. When adding fulvic acid (FA) or humic acid (HA) in the reaction system, the degradation of triclosan could be suppressed slightly, and HA exhibited stronger inhibition than FA. Based on the analysis of reaction intermediates, phenoxyl radical reaction and ring open reaction were involved in the decomposition of triclosan. Significant inhibition of overall toxicity to Photobacterium phosphoreum further confirmed the high efficiency of Fe(III)-TAML/H2O2 system for the removal of antibiotic activities resulting from the parent triclosan molecule and its degradation products.


Asunto(s)
Triclosán/química , Contaminantes Químicos del Agua/química , Contaminantes Ambientales , Sustancias Húmicas , Peróxido de Hidrógeno/química , Hierro/química , Ligandos , Oxidación-Reducción , Fenoles , Photobacterium
7.
Water Res ; 183: 116082, 2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32668353

RESUMEN

In this study, a new photo-aging pathway in the aquatic environments and the underlying transformation mechanism were described for polyvinyl chloride microplastic (PVC-MP). Our results indicated that the photo-aging of PVC-MP was strongly dependent on particle size and the aging reaction could be facilitated in the presence of low-molecular-weight organic acid (LMWOA) and LMWOA-Fe(III) complex under simulated and natural sunlight irradiation and ambient conditions. The hydroxyl radical (OH•) generated from the photolysis of LMWOA or its ferric complexes played a dominant role in enhancing PVC-MP degradation. In situ Fourier transform infrared and Raman spectroscopic techniques and theoretical calculations further confirmed that C-Cl bond cleavage and formation of polyene and carbonyl underwent on the PVC-MP surface, especially in the presence of LMWOA and LMWOA-Fe(III). Moreover, PVC-MP surface oxidation also led to the increase of the specific surface area and affinity towards water as indicated by the results of scanning electron microscopy, Brunauer-Emmett-Teller tests and contact angles for water, which would further enhance the adsorption of polar contaminants on PVC-MP and thus increase the health risk of PVC-MP on aquatic organisms.


Asunto(s)
Cloruro de Polivinilo , Envejecimiento de la Piel , Compuestos Férricos , Microplásticos , Plásticos
8.
Chemosphere ; 256: 127104, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32470734

RESUMEN

Iron(III)-tetraamidomacrocyclic ligand (FeIII-TAML) activators have drawn great attentions due to the high reactivity to degrade organic pollutants. However, previous studies showed that the reactivity and stability of FeIII-TAML were both strongly pH-dependent, which dramatically decrease at lower pH levels. Herein, FeIII-TAML/DODMA (dimethyldioctadecylammonium chloride) microspheres with diameters ranging from 100 to 2000 nm were synthesized via a surfactant-assisted self-assembly technique. The newly synthesized FeIII-TAML/DODMA composite exhibits superior reactivity compared to free FeIII-TAML as indicated by the degradation of bisphenols (i.e., bisphenol A and its analogues) over a wide pH range (i.e., pH 4.5-10.0). Based on the adsorption results and quantitative structure-activity relationship (QSAR) models, the enhanced reactivity of FeIII-TAML/DODMA is mainly ascribed to the hydrophobic sorption of bisphenols. Moreover, the enhanced ionization of the axial water molecule associated with FeIII-TAML could further enhance the reactivity of synthesized microcomposites, which was confirmed by the results of infrared and Raman spectra. Furthermore, FeIII-TAML/DODMA shows distinct acid-resistance as explained by the protection of the hydrophobic alkyl chains of DODMA. This novel method would provide a simple and effective strategy to expand the application of FeIII-TAML in a wide pH range and render FeIII-TAML/DODMA microstructure as a potential catalyst for treatment of bisphenol compounds.


Asunto(s)
Compuestos de Bencidrilo/química , Modelos Químicos , Fenoles/química , Catálisis , Compuestos Férricos/química , Peróxido de Hidrógeno/química , Hierro/química , Ligandos , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...