Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
3.
Cell Death Dis ; 12(1): 24, 2021 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-33414433

RESUMEN

Long non-coding RNA (lncRNA) DANCR has been reported to participate in key processes such as stem cell differentiation and tumorigenesis. In a high throughput screening for lncRNAs involved in Doxorubicin-induced apoptosis, we found DANCR was suppressed by Doxorubicin and it acted as an important repressor of apoptosis in colorectal cancer. Further studies demonstrated that DANCR promoted the oncogenic lncRNA MALAT1 expression via enhancing the RNA stability of MALAT1 to suppress apoptosis. MALAT1 could efficiently mediate the suppressive function of DANCR on apoptosis. Mechanistic studies found the RNA-binding protein QK served as an interacting partner of both DANCR and MALAT1, and the protein level of QK was subjected to the regulation by DANCR. Furthermore, QK was able to modulate the RNA stability of MALAT1, and the interaction between QK and MALAT1 was controlled by DANCR. In addition, QK could mediate the function of DANCR in regulating the expression of MALAT1 and suppressing apoptosis. These results revealed DANCR played a critical role in Doxorubicin-induced apoptosis in colorectal cancer cells, which was achieved by the interaction between DANCR and QK to enhance the expression of MALAT1.


Asunto(s)
Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/metabolismo , Doxorrubicina/farmacología , ARN Largo no Codificante/metabolismo , Antibióticos Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Línea Celular Tumoral , Neoplasias Colorrectales/genética , Humanos , Oncogenes , ARN Largo no Codificante/genética
4.
Precis Clin Med ; 4(3): 149-154, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35693215

RESUMEN

To assess the impact of the key non-synonymous amino acid substitutions in the RBD of the spike protein of SARS-CoV-2 variant B.1.617.1 (dominant variant identified in the current India outbreak) on the infectivity and neutralization activities of the immune sera, L452R and E484Q (L452R-E484Q variant), pseudotyped virus was constructed (with the D614G background). The impact on binding with the neutralizing antibodies was also assessed with an ELISA assay. Pseudotyped virus carrying a L452R-E484Q variant showed a comparable infectivity compared with D614G. However, there was a significant reduction in the neutralization activity of the immune sera from non-human primates vaccinated with a recombinant receptor binding domain (RBD) protein, convalescent patients, and healthy vaccinees vaccinated with an mRNA vaccine. In addition, there was a reduction in binding of L452R-E484Q-D614G protein to the antibodies of the immune sera from vaccinated non-human primates. These results highlight the interplay between infectivity and other biologic factors involved in the natural evolution of SARS-CoV-2. Reduced neutralization activities against the L452R-E484Q variant will have an impact on health authority planning and implications for the vaccination strategy/new vaccine development.

5.
Mol Cell Biol ; 36(21): 2742-2754, 2016 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-27550813

RESUMEN

Oncogenic KRAS contributes to malignant transformation, antiapoptosis, and metastasis in multiple human cancers, such as lung, colon, and pancreatic cancers and melanoma. MicroRNAs (miRNAs) are endogenous 18- to 25-nucleotide noncoding small RNAs that regulate gene expression in a sequence-specific manner via the degradation of target mRNAs or inhibition of protein translation. In the present study, using array-based miRNA profiling in IMR90 and MCF10A cells expressing oncogenic KRAS, we identified that the expression of the microRNA 200 (mir-200) family was suppressed by KRAS activation and that this suppression was mediated by the transcription factors JUN and SP1 in addition to ZEB1. Restoration of mir-200 expression compromised KRAS-induced cellular transformation in vitro and tumor formation in vivo In addition, we found that enforced expression of mir-200 abrogated KRAS-induced resistance to apoptosis by directly targeting the antiapoptotic gene BCL2 Finally, mir-200 was able to antagonize the epithelial-mesenchymal transition (EMT) driven by mutant KRAS. Collectively, our results suggest that repression of endogenous mir-200 expression is one of the important cellular responses to KRAS activation during tumor initiation and progression.


Asunto(s)
Transición Epitelial-Mesenquimal/genética , MicroARNs/genética , Neoplasias/genética , Oncogenes , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Apoptosis/genética , Secuencia de Bases , Línea Celular Tumoral , Supervivencia Celular/genética , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología , Regulación Neoplásica de la Expresión Génica , Humanos , Proteínas Proto-Oncogénicas c-jun/metabolismo , Transducción de Señal/genética , Factor de Transcripción Sp1
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA