Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 16(13)2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-39000619

RESUMEN

Urea-formaldehyde (UF) resin is the most widely used adhesive resin. However, it is necessary to improve its flame-retardant performance to expand its applications. In this study, exploiting electrostatic interactions, anionic phytic acid and cationic chitosan were combined to form a bio-based intumescent flame-retardant, denoted phytic acid-chitosan polyelectrolyte (PCS). The molecular structure of the urea-formaldehyde resin was optimized by crosslinking with melamine and plasticizing with polyvinyl alcohol-124. Thus, by combining PCS with the urea-formaldehyde resin and with ammonium polyphosphate and ammonium chloride as composite curing agents, flame-retardant urea-formaldehyde resins (FRUFs) were prepared. Compared to traditional UF resin, FRUF showed excellent flame retardancy and not only reached the UL-94 V-0 level, but the limit of oxygen index was also as high as 36%. Compared to those of UF, the total heat release and peak heat release rate of FRUF decreased by 86.44% and 81.13%, respectively. The high flame retardancy of FRUF originates from the combination of oxygen and heat isolation by the dense carbon layer, quenching of phosphorus free radicals, and dilution of oxygen by a non-flammable gas. In addition, the mechanical properties of the FRUF remained good, even after modification. The findings of this study provide a reference for the flame-retardant application of FRUF for applications in multiple fields.

2.
Polymers (Basel) ; 16(11)2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38891502

RESUMEN

To broaden the applications of wood, it is necessary to prepare flame-retardant coatings that can protect wood substrates during combustion. In this study, a bio-based, intumescent, flame-retardant phytic acid-melamine polyelectrolyte (PM) was prepared using phosphorus-rich biomass phytic acid and nitrogen-rich melamine as raw materials through an ion crosslinking reaction. Subsequently, a series of bio-based, flame-retardant wood coatings were prepared by optimizing the structure of urea-formaldehyde resin with the addition of melamine, sodium lignosulfonate, and PM as a flame-retardant curing agent. Woods coated with PM-containing coatings displayed significantly improved flame-retardant performances in comparison to uncoated woods. For PM-cured woods, the measured values of total heat release and total smoke production were 91.51% and 57.80% lower, respectively, compared with those of uncoated wood. Furthermore, the fire growth index decreased by 97.32%, indicating a lower fire hazard. This increase in flame retardancy and smoke suppression performance is due to the dense expanded carbon layer formed during the combustion of the coating, which isolates oxygen and heat. In addition, the mechanical properties of the flame-retardant coatings cured with PM are similar to those cured with a commercial curing agent, NH4Cl. In addition, the prepared flame-retardant coating can also stain the wood. This study proves the excellent flame-retarding and curing effect of ammonium phytate in urea-formaldehyde resin coatings and provides a new approach for the application of bio-based flame retardants in wood coatings.

3.
Nanomaterials (Basel) ; 13(12)2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37368301

RESUMEN

As traditional energy structures transition to new sources, hydrogen is receiving significant research attention owing to its potential as a clean energy source. The most significant problem with electrochemical hydrogen evolution is the need for highly efficient catalysts to drive the overpotential required to generate hydrogen gas by electrolyzing water. Experiments have shown that the addition of appropriate materials can reduce the energy required for hydrogen production by electrolysis of water and enable it to play a greater catalytic role in these evolution reactions. Therefore, more complex material compositions are required to obtain these high-performance materials. This study investigates the preparation of hydrogen production catalysts for cathodes. First, rod-like NiMoO4/NiMo is grown on NF (Nickel Foam) using a hydrothermal method. This is used as a core framework, and it provides a higher specific surface area and electron transfer channels. Next, spherical NiS is generated on the NF/NiMo4/NiMo, thus ultimately achieving efficient electrochemical hydrogen evolution. The NF/NiMo4/NiMo@NiS material exhibits a remarkably low overpotential of only 36 mV for the hydrogen evolution reaction (HER) at a current density of 10 mA·cm-2 in a potassium hydroxide solution, indicating its potential use in energy-related applications for HER processes.

4.
Nanomaterials (Basel) ; 13(3)2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36770541

RESUMEN

Metal organic frameworks (MOFs) are a kind of porous coordination polymer supported by organic ligands with metal ions as connection points. They have a controlled structure and porosity and a significant specific surface area, and can be used as functional linkers or sacrificial templates. However, long diffusion pathways, low conductivity, low cycling stability, and the presence of few exposed active sites limit the direct application of MOFs in energy storage applications. The targeted design of MOFs has the potential to overcome these limitations. This study proposes a facile method to grow and immobilize MOFs on layered double hydroxides through an in situ design. The proposed method imparts not only enhanced conductivity and cycling stability, but also provides additional active sites with excellent specific capacitance properties due to the interconnectivity of MOF nanoparticles and layered double hydroxide (LDH) nanosheets. Due to this favorable heterojunction hook, the NiMo-LDH@NiCo-MOF composite exhibits a large specific capacitance of 1536 F·g-1 at 1 A·g-1. In addition, the assembled NiMo-LDH@NiCo-MOF//AC asymmetric supercapacitor can achieve a high-energy density value of 60.2 Wh·kg-1 at a power density of 797 W·kg-1, indicating promising applications.

5.
ACS Appl Mater Interfaces ; 13(19): 22664-22675, 2021 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-33950668

RESUMEN

The three-dimensional (3D) architecture of electrode materials with excellent stability and electrochemical activity is extremely desirable for high-performance supercapacitors. In this study, we develop a facile method for fabricating 3D self-supporting Ti3C2 with MoS2 and Cu2O nanocrystal composites for supercapacitor applications. MoS2 was incorporated in Ti3C2 using a hydrothermal method, and Cu2O was embedded in two-dimensional nanosheets by in situ chemical reduction. The resulting composite electrode showed a synergistic effect between the components. Ti3C2 served as a conductive additive to connect MoS2 nanosheets and facilitate charge transfer. MoS2 acted as an active spacer to increase the interlayer space of Ti3C2 and protect Ti3C2 from oxidation. Cu2O effectively prevented the collapse of the lamellar structure of Ti3C2-MoS2. Consequently, the optimized composite exhibited an excellent specific capacitance of 1459 F g-1 at a current density of 1 A g-1. Further, by assembling an all-solid-state flexible supercapacitor with activated carbon, a high energy density of 60.5 W h kg-1 was achieved at a power density of 103 W kg-1. Additionally, the supercapacitor exhibited a capacitance retention of 90% during 3000 charging-discharging cycles. Moreover, high mechanical robustness was retained after bending at different angles, thereby suggesting significant potential applications for future flexible and wearable devices.

6.
RSC Adv ; 10(17): 9996-10005, 2020 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-35498595

RESUMEN

Ammonia borane (AB, NH3BH3) with extremely high hydrogen content (19.6 wt%) is considered to be one of the most promising chemical hydrides for storing hydrogen. According to the starting materials of AB and H2O, a hydrogen capacity of 7.8 wt% is achieved for the AB hydrolytic dehydrogenation system with the presence of a highly efficient catalyst. In this work, ruthenium nanoparticles supported on magnesium-aluminum layered double hydroxides (Ru/MgAl-LDHs) were successfully synthesized via a simple method, i.e., chemical reduction. The effect of Mg/Al molar ratios in MgAl-LDHs on the catalytic performance for AB hydrolytic dehydrogenation was systematically investigated. Catalyzed by the as-synthesized Ru/Mg1Al1-LDHs catalyst, it took about 130 s at room temperature to complete the hydrolysis reaction of AB, which achieved a rate of hydrogen production of about 740 ml s-1 g-1. Furthermore, a relatively high activity (TOF = 137.1 molH2 molRu -1 min-1), low activation energy (E a = 30.8 kJ mol-1) and fairly good recyclability of the Ru/Mg1Al1-LDHs catalyst in ten cycles were achieved toward AB hydrolysis for hydrogen generation. More importantly, the mechanism of AB hydrolysis catalyzed by Ru/MgAl-LDHs was simulated via density functional theory. The facile preparation and high catalytic performance of Ru/MgAl-LDHs make it an efficient catalyst for hydrolytic dehydrogenation of AB.

7.
Front Chem ; 7: 937, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32047735

RESUMEN

Developing cheap metal nanocatalysts with controllable catalytic activity is one of the critical challenges for improving hydrogen storage in magnesium (Mg). Here, it is shown that the activity of graphene-anchored Co-Ni nanocatalysts can be regulated effectively by tuning their composition and morphology, which results in significantly improved hydrogen storage in Mg. The catalytic activity of supported Co-Ni nanocatalysts is demonstrated to be highly dependent on their morphology and composition. When Ni was partly substituted by Co, the shape of these nanocatalysts was changed from spherical to plate-like, thus corresponding to a decrease in activity. These alterations intrinsically result in enhanced hydrogen storage properties of MgH2, i.e., not only does it exhibit a decreased peak desorption temperature but also a positive change in the initial activation for sorption. The results obtained provide a deep understanding of the tuning of catalytic activity via composition and morphology and further provide insights into improving hydrogen storage in Mg-based materials.

8.
Talanta ; 140: 122-127, 2015 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-26048833

RESUMEN

An ultrasensitive electrochemical immunosensor for detection of Salmonella has been developed based on using high density gold nanoparticles (GNPs) well dispersed in chitosan hydrogel and modified glassy carbon electrode. The composite film has been oxidized in NaCl solution and used as a platform for the immobilization of capture antibody (Ab1) for biorecognition. After incubation in Salmonella suspension and horseradish peroxidase (HRP) conjugated secondary antibody (Ab2) solution, a sandwich electrochemical immunosensor has been constructed. The electrochemical signal was obtained and improved by comparing the composite film with chitosan film. The result has shown that the constructed sensor provides a wide linear range from 10 to 10(5) CFU/mL with a low detection limit of 5 CFU/mL (at the ratio of signal to noise, S/N=3:1). Furthermore, the proposed immunosensor has demonstrated good selectivity and reproducibility, which indicates its potential in the clinical diagnosis of Salmonella contaminations.


Asunto(s)
Quitosano/química , Técnicas Electroquímicas/instrumentación , Oro/química , Nanopartículas del Metal/química , Infecciones por Salmonella/microbiología , Salmonella/aislamiento & purificación , Animales , Técnicas Biosensibles/instrumentación , Diseño de Equipo , Humanos , Límite de Detección , Nanopartículas del Metal/ultraestructura , Leche/microbiología , Reproducibilidad de los Resultados , Microbiología del Agua
9.
Dalton Trans ; 43(41): 15291-4, 2014 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-25186984

RESUMEN

The interaction of [BH(x)]- and [NH(x)]-containing species gives rise to molecular hydrogen and the establishment of the B-N bond. Up to now, metal amides and ammonia are the commonly used [NH(x)] sources. Herein, urea, an organic carbonyl diamide, was used to react with Ca(BH4)2. A new type of complex hydride Ca(BH4)2·4CO(NH2)2 was synthesized with release of ca. 5.2 wt% hydrogen below 250 °C.

10.
Biosens Bioelectron ; 58: 193-9, 2014 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-24637168

RESUMEN

Escherichia coli O157:H7 can cause life-threatening gastrointestinal diseases and has been a severe public health problem worldwide in recent years. A novel biosensor for the detection of E. coli O157:H7 is described here using a film composed of ferrocene-peptide conjugates, in which the antimicrobial peptide magainin I has been incorporated as the biorecognition element. Electrochemical impedance spectroscopy was employed to investigate the surface characteristics of the newly developed biosensor and to monitor the interactions between the peptide film and the pathogenic bacteria. X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry (ToF-SIMS) were employed to confirm the immobilization of ferrocene-conjugate onto the gold surface. Non-pathogenic E. coli K12, Staphylococcus epidermidis and Bacillus subtilis were used in this study to evaluate the selectivity of the proposed biosensor. The results have shown the order of the preferential selectivity of the method is E. coli O157:H7>non-pathogenic E. coli>gram positive species. The detection of E. coli O157:H7 with a sensitivity of 10(3)cfu/mL is enabled by the biosensor. The experimental conditions have been optimized and the plot of changes of charge transfer resistance (ΔRCT) and the logarithm of the cell concentration of E. coli O157:H7 shows a linear correlation in the range of 10(3)-10(7)cfu/mL with a correlation coefficient of 0.983.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/química , Carga Bacteriana/instrumentación , Técnicas Biosensibles/instrumentación , Conductometría/instrumentación , Escherichia coli O157/química , Escherichia coli O157/aislamiento & purificación , Oro/química , Diseño de Equipo , Análisis de Falla de Equipo , Compuestos Ferrosos/química , Metalocenos , Microelectrodos
11.
Talanta ; 110: 96-100, 2013 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-23618181

RESUMEN

Gold nanoparticles (GNPs) assembled polyaniline nanospheres (PANS) composite were prepared by noncovalent strategy. Cytochrome c (Cyt c) was electrostatically adsorbed on the GNPs/PANS modified electrode. The direct electron transfer (DET) between Cyt c and GNPs/PANS modified electrode was investigated. Cyt c shows a couple of quasi-reversible and well-defined cyclic voltammetry (CV) peaks with a formal potential (E(0')) of -0.27 V (versus Ag/AgCl) in pH 7.0 phosphate buffer solution (PBS). The Cyt c/GNPs/PANS modified electrode gives an improved electrocatalytic activity toward the reduction of hydrogen peroxide (H2O2). The catalysis currents increase linearly to the H2O2 concentration in a wide range of 0.01-2.4 mM with a correlation coefficient 0.998. After immobilized glucose oxidase (GOD) on the Cyt c/GNPs/PANS modified electrode by Nafion polymer, a bienzymatic glucose biosensor was further prepared for sensitive detection of glucose. The amperometric detection of glucose was assayed by potentiostating the bienzymatic electrode at -0.2 V versus Ag/AgCl to reduce the enzymatically produced H2O2 with minimal interference from the coexisting electroactive compounds. The proposed glucose biosensor exhibits good response performance to glucose with a wide linear range from 0.01 to 3.2mM with a correlation coefficient of 0.997. The electrode has high sensitivity of 63.1 µA mM(-1)cm(-2) and a detection limit 0.01 mM at the signal-to-noise ratio of 3. Moreover, the glucose biosensor possesses good stability and reproducibility.


Asunto(s)
Compuestos de Anilina/química , Técnicas Biosensibles , Citocromos c/metabolismo , Técnicas Electroquímicas/métodos , Glucosa/análisis , Oro/química , Nanopartículas del Metal , Animales , Caballos , Microscopía Electrónica de Transmisión
12.
Biosens Bioelectron ; 23(7): 1010-6, 2008 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-18054479

RESUMEN

A novel amperometric biosensor, based on electrodeposition of platinum nanoparticles onto multi-walled carbon nanotube (MWNTs) and immobilizing enzyme with chitosan-SiO(2) sol-gel, is presented in this article. MWNTs were cast on the glass carbon (GC) substrate directly. An extra Nafion coating was used to eliminate common interferents such as acetaminophen and ascorbic acids. The morphologies and electrochemical performance of the modified electrodes have been investigated by scanning electron microscopy (SEM) and amperometric methods, respectively. The synergistic action of Pt and MWNTs and the biocompatibility of chitosan-SiO(2) sol-gel made the biosensor have excellent electrocatalytic activity and high stability. The resulting biosensor exhibits good response performance to glucose with a wide linear range from 1 microM to 23 mM and a low detection limit 1 microM. The biosensor also shows a short response time (within 5s), and a high sensitivity (58.9 microAm M(-1)cm(-2)). In addition, effects of pH value, applied potential, rotating rate, electrode construction and electroactive interferents on the amperometric response of the sensor were investigated and discussed in detail.


Asunto(s)
Técnicas Biosensibles/instrumentación , Quitosano/química , Electroquímica/instrumentación , Glucosa Oxidasa/química , Glucosa/análisis , Nanotubos de Carbono/química , Platino (Metal)/química , Técnicas Biosensibles/métodos , Electroquímica/métodos , Galvanoplastia/métodos , Enzimas Inmovilizadas/química , Diseño de Equipo , Análisis de Falla de Equipo , Geles/química , Microelectrodos , Nanotubos de Carbono/ultraestructura , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Dióxido de Silicio/química
13.
Talanta ; 74(2): 206-11, 2007 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-18371631

RESUMEN

A robust and effective nanohybrid film based on gold nanoparticles (GNPs)/chitosan (Chit)/multi-walled carbon nanotubes (MWNTs) was prepared by a layer-by-layer self-assembly technique. Cytochrome c (Cyt c) was successfully immobilized on the nanohybrid film modified glassy carbon (GC) electrode by cyclic voltammetry. The direct electron transfer between Cyt c and the modified electrode was investigated in detail. Cyt c shows a couple of quasi-reversible and well-defined cyclic voltammetry peaks with a formal potential (E(0')) of -0.16 V (versus Ag/AgCl) in pH 7.0 phosphate buffer solution (PBS). The Cyt c/GNPs/Chit/MWNTs modified GC electrode gives an improved electrocatalytic activity towards the reduction of hydrogen peroxide (H2O2). The sensitivity is 92.21 microA mM(-1) cm(-2) and the calculated apparent Michaelis-Menten constant (K(m)(app)) is 0.791 mM, indicating a high-catalytic activity of Cyt c. The catalysis currents increase linearly to the H2O2 concentration in a wide range of 1.5 x 10(-6) to 5.1 x 10(-4)M with a correlation coefficient 0.999. The detection limit is 9.0 x 10(-7)M (at the ratio of signal to noise, S/N=3). Moreover, the modified electrode displays rapid response (5s) to H2O2, and possesses good stability and reproducibility.


Asunto(s)
Quitosano/química , Citocromos c/química , Oro/química , Nanopartículas del Metal/química , Nanotubos de Carbono/química , Catálisis , Electroquímica , Transporte de Electrón , Peróxido de Hidrógeno/química , Microelectrodos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...