Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 730: 150391, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-39002199

RESUMEN

Glucocorticoid-induced osteoporosis serves as a primary cause for secondary osteoporosis and fragility fractures, representing the most prevalent adverse reaction associated with prolonged glucocorticoid use. In this study, to elucidate the impact and underlying mechanisms of fluid shear stress (FSS)-mediated Piezo1 on dexamethasone (Dex)-induced apoptosis, we respectively applied Dex treatment for 6 h, FSS at 9 dyne/cm2 for 30 min, Yoda1 treatment for 2 h, and Piezo1 siRNA transfection to intervene in MLO-Y4 osteocytes. Western blot analysis was used to assess the expression of Cleaved Caspase-3, Bax, Bcl-2, and proteins associated with the PI3K/Akt pathway. Additionally, qRT-PCR was utilized to quantify the mRNA expression levels of these molecules. Hoechst 33258 staining and flow cytometry were utilized to evaluate the apoptosis levels. The results indicate that FSS at 9 dyne/cm2 for 30 min significantly upregulates Piezo1 in osteocytes. Following Dex-induced apoptosis, the phosphorylation levels of PI3K and Akt are markedly suppressed. FSS-mediated Piezo1 exerts a protective effect against Dex-induced apoptosis by activating the PI3K/Akt pathway. Additionally, downregulating the expression of Piezo1 in osteocytes using siRNA exacerbates Dex-induced apoptosis. To further demonstrate the role of the PI3K/Akt signaling pathway, after intervention with the PI3K pathway inhibitor, the activation of the PI3K/Akt pathway by FSS-mediated Piezo1 in osteocytes was significantly inhibited, reversing the anti-apoptotic effect. This study indicates that under FSS, Piezo1 in MLO-Y4 osteocytes is significantly upregulated, providing protection against Dex-induced apoptosis through the activation of the PI3K/Akt pathway.

2.
Arch Osteoporos ; 19(1): 42, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38796579

RESUMEN

This study examines the relationship between TyG-BMI, an indicator of insulin resistance, and bone mineral density in US adults without diabetes, revealing a positive association. The findings suggest that higher TyG-BMI levels may be linked to a lower risk of osteoporosis, providing a basis for future research in this area. OBJECTIVE: Patients with osteoporosis are often diagnosed with type 2 diabetes or prediabetes. Insulin resistance is a prediabetic state, and triglyceride glucose-body mass index (TyG-BMI) has been recognized as a potential predictor of it, valuable in assessing prediabetes, atherosclerosis, and other diseases. However, the validity of TyG-BMI in osteoporosis studies remains inadequate. PURPOSE: The purpose of this study was to evaluate the relationship between TyG-BMI and BMD as well as the effect of TyG-BMI on the odds of developing osteoporosis in US adults without diabetes. METHODS: National Health and Nutrition Examination Survey data were obtained. The relationship between TyG-BMI and BMD was evaluated via multivariate linear regression models. Smoothed curve fitting and threshold effect analysis explored potential non-linear relationships, and age, gender, and race subgroup analyses were performed. In addition, multivariate logistic regression models were employed to analyze its potential role in the development of osteoporosis. RESULTS: In a study of 6501 participants, we observed a significant positive correlation between the TyG-BMI index and BMD, even after adjusting for covariates and categorizing TyG-BMI. The study identified specific TyG-BMI folding points-112.476 for the total femur BMD, 100.66 for the femoral neck BMD, 107.291 for the intertrochanter BMD, and 116.58 for the trochanter BMD-indicating shifts in the relationship's strength at these thresholds. While the association's strength slightly decreased after the folding points, it remained significant. Subgroup analyses further confirmed the positive TyG-BMI and BMD correlation. Multivariate linear regression analyses indicated a lower osteoporosis risk in participants with higher TyG-BMI levels, particularly in menopausal women over 40 and men over 60. CONCLUSION: This study suggests a positive correlation between BMD and TyG-BMI in US adults without diabetes. Individuals with higher levels of TyG-BMI may have a lower risk of osteoporosis.


Asunto(s)
Biomarcadores , Índice de Masa Corporal , Densidad Ósea , Resistencia a la Insulina , Osteoporosis , Humanos , Masculino , Femenino , Resistencia a la Insulina/fisiología , Persona de Mediana Edad , Adulto , Estados Unidos/epidemiología , Osteoporosis/epidemiología , Osteoporosis/sangre , Biomarcadores/sangre , Anciano , Glucemia/análisis , Glucemia/metabolismo , Triglicéridos/sangre , Encuestas Nutricionales
3.
Cell Death Discov ; 10(1): 155, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38538596

RESUMEN

Senile osteoporosis is mainly caused by osteoblasts attenuation, which results in reduced bone mass and disrupted bone remodeling. Numerous studies have focused on the regulatory role of m6A modification in osteoporosis; however, most of the studies have investigated the differentiation of bone marrow mesenchymal stem cells (BMSCs), while the direct regulatory mechanism of m6A on osteoblasts remains unknown. This study revealed that the progression of senile osteoporosis is closely related to the downregulation of m6A modification and methyltransferase-like 3 (METTL3). Overexpression of METTL3 inhibits osteoblast aging. Methylated RNA immunoprecipitation sequencing (MeRIP-seq) revealed that METTL3 upregulates the stability of Hspa1a mRNA, thereby inhibiting osteoblast aging. Moreover, the results demonstrated that METTL3 enhances the stability of Hspa1a mRNA via m6A modification to regulate osteoblast aging. Notably, YTH N6-methyladenosine RNA binding protein 2 (YTHDF2) participates in stabilizing Hspa1a mRNA in the METTL3-mediated m6A modification process, rather than the well-known degradation function. Mechanistically, METTL3 increases the stability of Hspa1a mRNA in a YTHDF2-dependent manner to inhibit osteoblast aging. Our results confirmed the significant role of METTL3 in osteoblast aging and suggested that METTL3 could be a potential therapeutic target for senile osteoporosis.

4.
Knee Surg Sports Traumatol Arthrosc ; 32(5): 1113-1122, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38469920

RESUMEN

PURPOSE: This study aimed to assess the relationship between the geometric features of tibial eminence and susceptibility to noncontact anterior cruciate ligament (ACL) injuries. METHODS: Patients with unilateral noncontact knee injuries between 2015 and 2021 were consecutively enroled in this study. Based on knee magnetic resonance imaging (MRI) and arthroscopic visualisation, patients were categorised into the case group (ACL rupture) and control group (ACL intact). Using MRI, the geometric features of tibial eminence were characterised by measuring the sagittal slopes, depth of concavity and coronal slopes of the inclined surfaces of the tibial spines. Univariate and multivariate logistic regressions were conducted to explore independent associations between quantified geometric indices of tibial eminence and the risk of noncontact ACL injuries. RESULTS: This study included 187 cases and 199 controls. A decreased sagittal slope of the medial tibial spine (MTSSS) (combined group: odds ratio [OR]: 0.87 [0.82, 0.92], p < 0.001; females: OR: 0.88 [0.80, 0.98], p = 0.020; males: OR: 0.87 [0.81, 0.93], p < 0.001) and an increased depth of concavity in the lateral tibial spine (LTSD) (combined group: OR: 1.51 [1.24, 1.85], p < 0.001; females: OR: 1.65 [1.12, 2.43], p = 0.012; males: OR: 1.44 [1.11, 1.89], p = 0.007) were independent risk factors for noncontact ACL injuries. Moreover, a steeper coronal slope of the inclined surface of the medial tibial spine was a significant predictor of noncontact ACL injuries for males (MTSCS: OR: 1.04 [1.01, 1.08], p = 0.015) but not for females. CONCLUSION: Geometric features of tibial eminence, particularly a decreased MTSSS and an increased LTSD, were identified as independent risk factors for noncontact ACL injuries. These findings will help clinicians identify individuals at high risk of ACL injury and facilitate the development of targeted prevention strategies. LEVEL OF EVIDENCE: Level III.


Asunto(s)
Lesiones del Ligamento Cruzado Anterior , Imagen por Resonancia Magnética , Tibia , Humanos , Femenino , Masculino , Factores de Riesgo , Tibia/diagnóstico por imagen , Adulto , Adulto Joven , Estudios de Casos y Controles , Artroscopía , Adolescente
5.
Indian J Orthop ; 57(1): 20-32, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36660483

RESUMEN

Background: Bone bruises and concomitant ligament injuries after anterior cruciate ligament (ACL) injuries have attracted attention, but their correlation and potential clinical significance remain unclear. Purpose: To assess the relationship between bone bruises and concomitant ligamentous injuries in ACL injuries. Study design: Systematic review. Methods: A comprehensive search of PubMed, Embase, Web of Science, and Cochrane Library was completed from inception to October 20, 2021. All articles that evaluated the relationship between bone bruises and related ligaments injuries were included. Methodological Index for Non-Randomized Studies (MINORS) was used for quality assessment as well as Review Manager 5.3 was used for data analysis. Results: A total of 19 studies evaluating 3292 patients were included. After meta-analysis, anterolateral ligament (ALL) injuries were associated with bone bruising on the lateral tibial plateau (LTP) (RR = 2.33; 95% CI 1.44-3.77; p = 0.0006), lateral femoral condyle (LFC) (RR = 1.97; 95% CI 1.37-2.85; p = 0.0003) and medial tibial plateau (MTP) (RR = 1.62; 95% CI 1.24-2.11; p = 0.0004); Moreover, medial collateral ligament (MCL) injuries were associated with bone bruising on the femur (RR = 1.49; 95% CI 1.17-1.90; p = 0.001), and no statistical significance was found between bone bruising on the MTP and Kaplan fiber (KF) injuries (RR = 1.58; 95% CI 1.00-2.49; p = 0.05). Nonetheless, the current evidence did not conclude that bone bruises were associated with lateral collateral ligament (LCL) injuries. Conclusion: For individuals with an ACL injury, bone bruises of the LTP, LFC, and MTP can assist in the diagnosis of ALL injuries. Furthermore, femoral bruising has potential diagnostic value for MCL injuries. Knowing these associations allows surgeons to be alert to ACL-related ligament injuries on MRI and during operations in future clinical practice.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...