Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Nanomedicine ; 18: 7183-7204, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38076727

RESUMEN

The increasing use of titanium dioxide nanoparticles (TiO2 NPs) across various fields has led to a growing concern regarding their environmental contamination and inevitable human exposure. Consequently, significant research efforts have been directed toward understanding the effects of TiO2 NPs on both humans and the environment. Notably, TiO2 NPs exposure has been associated with multiple impairments of the nervous system. This review aims to provide an overview of the documented neurotoxic effects of TiO2 NPs in different species and in vitro models. Following exposure, TiO2 NPs can reach the brain, although the specific mechanism and quantity of particles that cross the blood-brain barrier (BBB) remain unclear. Exposure to TiO2 NPs has been shown to induce oxidative stress, promote neuroinflammation, disrupt brain biochemistry, and ultimately impair neuronal function and structure. Subsequent neuronal damage may contribute to various behavioral disorders and play a significant role in the onset and progression of neurodevelopmental or neurodegenerative diseases. Moreover, the neurotoxic potential of TiO2 NPs can be influenced by various factors, including exposure characteristics and the physicochemical properties of the TiO2 NPs. However, a systematic comparison of the neurotoxic effects of TiO2 NPs with different characteristics under various exposure conditions is still lacking. Additionally, our understanding of the underlying neurotoxic mechanisms exerted by TiO2 NPs remains incomplete and fragmented. Given these knowledge gaps, it is imperative to further investigate the neurotoxic hazards and risks associated with exposure to TiO2 NPs.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Síndromes de Neurotoxicidad , Humanos , Nanopartículas/toxicidad , Nanopartículas/química , Estrés Oxidativo , Titanio/química , Encéfalo , Síndromes de Neurotoxicidad/etiología , Nanopartículas del Metal/toxicidad , Nanopartículas del Metal/química
2.
Sci Total Environ ; 888: 164076, 2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37196938

RESUMEN

Titanium dioxide nanoparticles (TiO2 NPs) are widely used in several consumer products. However, because of their neurotoxic nature, exposure to TiO2 NPs could impair locomotor behavior. Whether the impairment in locomotor behavior caused by TiO2 NPs exposure is sustained and the effects is gender-specific has remained elusive, warranting further studies to elucidate the underlying mechanisms. Thus, we established a Drosophila model to study the effects of chronic TiO2 NPs exposure on the locomotor behavior of Drosophila in different generations and explore the underlying mechanisms. Chronic TiO2 NPs exposure caused accumulation of Ti in the body and affected the life history traits of Drosophila. Furthermore, chronic exposure to TiO2 NPs decreased the total crawling distance of larvae and the total movement distance of adult males in the F3 generation, indicating the damage caused to the locomotor behavior of Drosophila. Impaired neuromuscular junction (NMJ) morphology was observed, manifested by the reduced number of boutons, size of boutons, and branch length of NMJ. In addition, several differentially expressed genes (DEGs) related to NMJ development were selected by RNA sequencing and their expression was confirmed by quantitative real-time-polymerase chain reaction (qRT-PCR). Compared with the control group, the gene expression of Cyp6a17, frac, and kek2 in the TiO2 NPs exposure group decreased, whereas that of Gba1a, Hll and List was elevated. These findings indicated that chronic TiO2 NPs exposure damage the morphology of NMJ by altering the expression of genes related to NMJ development, consequently causing locomotor behavior deficits in Drosophila.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Masculino , Animales , Drosophila , Nanopartículas/toxicidad , Titanio/toxicidad , Larva/metabolismo , Nanopartículas del Metal/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...