Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
1.
World J Stem Cells ; 16(5): 538-550, 2024 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-38817334

RESUMEN

BACKGROUND: Thrombocytopenia 2, an autosomal dominant inherited disease characterized by moderate thrombocytopenia, predisposition to myeloid malignancies and normal platelet size and function, can be caused by 5'-untranslated region (UTR) point mutations in ankyrin repeat domain containing 26 (ANKRD26). Runt related transcription factor 1 (RUNX1) and friend leukemia integration 1 (FLI1) have been identified as negative regulators of ANKRD26. However, the positive regulators of ANKRD26 are still unknown. AIM: To prove the positive regulatory effect of GATA binding protein 2 (GATA2) on ANKRD26 transcription. METHODS: Human induced pluripotent stem cells derived from bone marrow (hiPSC-BM) and urothelium (hiPSC-U) were used to examine the ANKRD26 expression pattern in the early stage of differentiation. Then, transcriptome sequencing of these iPSCs and three public transcription factor (TF) databases (Cistrome DB, animal TFDB and ENCODE) were used to identify potential TF candidates for ANKRD26. Furthermore, overexpression and dual-luciferase reporter experiments were used to verify the regulatory effect of the candidate TFs on ANKRD26. Moreover, using the GENT2 platform, we analyzed the relationship between ANKRD26 expression and overall survival in cancer patients. RESULTS: In hiPSC-BMs and hiPSC-Us, we found that the transcription levels of ANKRD26 varied in the absence of RUNX1 and FLI1. We sequenced hiPSC-BM and hiPSC-U and identified 68 candidate TFs for ANKRD26. Together with three public TF databases, we found that GATA2 was the only candidate gene that could positively regulate ANKRD26. Using dual-luciferase reporter experiments, we showed that GATA2 directly binds to the 5'-UTR of ANKRD26 and promotes its transcription. There are two identified binding sites of GATA2 that are located 2 kb upstream of the TSS of ANKRD26. In addition, we discovered that high ANKRD26 expression is always related to a more favorable prognosis in breast and lung cancer patients. CONCLUSION: We first discovered that the transcription factor GATA2 plays a positive role in ANKRD26 transcription and identified its precise binding sites at the promoter region, and we revealed the importance of ANKRD26 in many tissue-derived cancers.

2.
Elife ; 132024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38497789

RESUMEN

The vertebrate kidneys play two evolutionary conserved roles in waste excretion and osmoregulation. Besides, the kidney of fish is considered as a functional ortholog of mammalian bone marrow that serves as a hematopoietic hub for generating blood cell lineages and immunological responses. However, knowledge about the properties of kidney hematopoietic cells, and the functionality of the kidney in fish immune systems remains to be elucidated. To this end, our present study generated a comprehensive atlas with 59 hematopoietic stem/progenitor cell (HSPC) and immune-cells types from zebrafish kidneys via single-cell transcriptome profiling analysis. These populations included almost all known cells associated with innate and adaptive immunity, and displayed differential responses to viral infection, indicating their diverse functional roles in antiviral immunity. Remarkably, HSPCs were found to have extensive reactivities to viral infection, and the trained immunity can be effectively induced in certain HSPCs. In addition, the antigen-stimulated adaptive immunity can be fully generated in the kidney, suggesting the kidney acts as a secondary lymphoid organ. These results indicated that the fish kidney is a dual-functional entity with functionalities of both primary and secondary lymphoid organs. Our findings illustrated the unique features of fish immune systems, and highlighted the multifaced biology of kidneys in ancient vertebrates.


Asunto(s)
Perciformes , Virosis , Animales , Pez Cebra , Hematopoyesis/genética , Riñón , Inmunidad Adaptativa , Análisis de Secuencia de ARN , Mamíferos
3.
Radiat Res ; 200(5): 489-502, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37815199

RESUMEN

Radiation exposure arising from radiotherapy may induce rapid bone loss and an increase in the extent of bone resorption. Reactive oxygen species (ROS) caused by radiation exposure play a crucial role during the process of osteoclastogenesis. However, the pathological mechanisms underlying radiation-induced osteoclastogenesis have yet to be fully elucidated. CR6-interacting factor-1 (Crif1) as a multifunctional protein is involved in regulating multiple biological functions in cells. Here, we investigated the role of Crif1 in radiation-induced osteoclastogenesis and found that radiation exposure induced an increase in the expression level of Crif1 and enhanced osteoclastogenesis in osteoclast progenitors. Crif1 and NF-κB p65 co-localized in the cytoplasm after radiation exposure. Crif1 knockdown did not affect the phosphorylation and total protein levels of extracellular signal-regulated kinases (ERK), c-Jun amino (N)-terminal kinases (JNK), p38, and IκB-α before and after irradiation. However, Crif1 knockdown did lead to the reduced phosphorylation and nuclear translocation of NF-κB p65 after irradiation and resulted in a reduced level of osteoclastogenesis in RAW264.7 cells after irradiation. In vivo studies involving Lyz2Cre;Crif1fl/fl mice possessing the myeloid-specific deletion of Crif1 demonstrated the alleviation of bone loss after irradiation when compared with Crif1fl/fl mice. Our findings demonstrate that Crif1 mediated the phosphorylation and nuclear translocation of NF-κB p65 and promoted osteoclastogenesis via the NF-κB signaling pathway after radiation exposure. Thus, our analysis revealed a specific role for Crif1 in the mediation of radiation-induced bone loss and may provide new insight into potential therapeutic strategies for radiation-induced bone loss.


Asunto(s)
Resorción Ósea , FN-kappa B , Ratones , Animales , FN-kappa B/metabolismo , Osteogénesis , Transducción de Señal , Osteoclastos/metabolismo , Osteoclastos/patología , Osteoclastos/efectos de la radiación , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Resorción Ósea/metabolismo , Resorción Ósea/patología , Diferenciación Celular , Proteínas de Ciclo Celular/metabolismo
4.
Materials (Basel) ; 16(20)2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37895633

RESUMEN

There are multiple routes to prepare semi-solid slurries with a globular microstructure for semi-solid forming. The variations in the microstructure of semi-solid slurries prepared using different routes may lead to significant differences in the flow behavior and mechanical properties of rheo-diecasting parts. Therefore, it is crucial to have a comprehensive understanding of the microstructure evolution associated with different slurry preparation routes and their resulting effects. In this study, the gas-induced semi-solid process (GISS) and the swirl enthalpy equilibrium device (SEED) routes were employed to prepare semi-solid Al-Si-Mg slurries for their simplicity and productivity in potential industrial applications. The prepared slurries were then injected into the shoot sleeves of a high-pressure die casting (HPDC) machine to produce tensile test bars. Subsequently, the bars underwent T6 treatment to enhance their mechanical properties. The microstructure, segregation, and mechanical properties of the samples were investigated and compared with those of conventional HPDC. The results indicated that the GISS and SEED can produce semi-solid slurries containing a spherical α-Al primary phase, as opposed to the dendritic structure commonly found in conventional castings. The liquid fraction had a significant effect on the flow behavior, resulting in variations in liquid segregation and mechanical properties. It was observed that a higher solid fraction (>75%) had a suppressing effect on surface liquid segregation. In addition, the tendency for liquid segregation gradually increased along the filling direction due to the special flow behavior of the semi-solid slurry with a low solid fraction. Furthermore, under the same die-casting process parameters, the conventional HPDC samples exhibit higher yield stress (139 ± 3 MPa) compared to SEED-HPDC and GISS-HPDC samples, which may be attributed to the small grain size and the distribution of eutectic phases. After undergoing the T6 treatment, both SEED-HPDC and GISS-HPDC samples showed a significant improvement in yield and tensile strength. These improvements are a result of solution and precipitation strengthening effects as well as the spheroidization of the eutectic Si phase. Moreover, the heat-treated SEED-HPDC samples demonstrate higher ultimate strength (336 ± 5 MPa) and elongation (13.7 ± 0.3%) in comparison to the GISS-HPDC samples (307 ± 4 MPa, 8.8 ± 0.2%) after heat treatment, mainly due to their low porosity density. These findings suggest that both GISS-HPDC and SEED-HPDC processes can be utilized to produce parts with favorable mechanical properties by implementing appropriate heat treatments. However, further investigation is required to control the porosities of GISS-HPDC samples during heat treatment.

5.
Materials (Basel) ; 16(18)2023 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-37763423

RESUMEN

The non-dendritic microstructure plays a crucial role in determining the rheological properties of semi-solid alloys, which are of the utmost importance for the successful industrial application of the thixoforging process. To further understand the impact of the reheating process on the evolution of microstructure and thixotropic deformation behavior in the semi-solid state, a hot extruded and T6 treated 7075 aluminum alloy was reheated to the selected temperature ranges using varying heating rates. Subsequently, thixo-compression tests were performed. The study found that during reheating and isothermal holding, the elongated microstructure of the as-supplied alloy can transform into equiaxed or spherical grains. The presence of recrystallized grains was found to be closely linked to the penetration of the liquid phase into the recrystallized grain boundaries. Furthermore, it was observed that higher heating rates resulted in smaller grain sizes. The thixotropic flow behavior of the alloy with various microstructures was analyzed using the true stress-strain curves obtained by thixo-compression experiments, which exhibited three stages: a rapid increase in true stress to a peak value, followed by a decrease in true stress and a steady stress until the end of compression. The stress fluctuated with strain during the formation of the slurry at a strain rate of 10 s-1, indicating the significant role of strain rate in material flow during semisolid formation.

6.
Front Oncol ; 13: 1271492, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37692858

RESUMEN

[This corrects the article DOI: 10.3389/fonc.2022.1009948.].

7.
J Immunol ; 211(5): 816-835, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37486225

RESUMEN

Programmed death-ligand 1/programmed cell death 1 (PD-L1/PD-1) is one of the most important immune checkpoints in humans and other mammalian species. However, the occurrence of the PD-L1/PD-1 checkpoint in evolutionarily ancient vertebrates remains elusive because of the absence of a PD-1 homolog before its appearance in tetrapods. In this article, we identified, to our knowledge, a novel PD-L1/B and T lymphocyte attenuator (BTLA) checkpoint in zebrafish by using an Edwardsiella tarda-induced bacterial infection model. Results showed that zebrafish (Danio rerio) PD-L1 (DrPD-L1) and BTLA (DrBTLA) were differentially upregulated on MHC class II+ macrophages (Mϕs) and CD8+ T cells in response to E. tarda infection. DrPD-L1 has a strong ability to interact with DrBTLA, as shown by the high affinity (KD = 5.68 nM) between DrPD-L1/DrBTLA proteins. Functionally, the breakdown of DrPD-L1/DrBTLA interaction significantly increased the cytotoxicity of CD8+BTLA+ T cells to E. tarda-infected PD-L1+ Mϕ cells and reduced the immune escape of E. tarda from the target Mϕ cells, thereby enhancing the antibacterial immunity of zebrafish against E. tarda infection. Similarly, the engagement of DrPD-L1 by soluble DrBTLA protein diminished the tolerization of CD8+ T cells to E. tarda infection. By contrast, DrBTLA engagement by a soluble DrPD-L1 protein drives aberrant CD8+ T cell responses. These results were finally corroborated in a DrPD-L1-deficient (PD-L1-/-) zebrafish model. This study highlighted a primordial PD-L1/BTLA coinhibitory axis that regulates CD8+ T cell activation in teleost fish and may act as an alternative to the PD-L1/PD-1 axis in mammals. It also revealed a previously unrecognized strategy for E. tarda immune evasion by inducing CD8+ T cell tolerance to target Mϕ cells through eliciting the PD-L1/BTLA checkpoint pathway.


Asunto(s)
Antígeno B7-H1 , Pez Cebra , Humanos , Animales , Antígeno B7-H1/metabolismo , Receptor de Muerte Celular Programada 1/metabolismo , Linfocitos T CD8-positivos , Mamíferos , Receptores Inmunológicos/metabolismo
8.
FASEB J ; 37(6): e22951, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37227178

RESUMEN

Teleost fish are indispensable model organisms for comparative immunology research that should lead to an improved understanding of the general principles of vertebrate immune system design. Although numerous studies on fish immunology have been conducted, knowledge about the cell types that orchestrate piscine immune systems remains limited. Here, we generated a comprehensive atlas of immune cell types in zebrafish spleen on the basis of single-cell transcriptome profiling. We identified 11 major categories from splenic leukocyte preparations, including neutrophils, natural killer cells, macrophages/myeloid cells, T cells, B cells, hematopoietic stem and progenitor cells, mast cells, remnants of endothelial cells, erythroid cells, erythroid progenitors, and a new type of serpin-secreting cells. Notably, we derived 54 potential subsets from these 11 categories. These subsets showed differential responses to spring viremia of carp virus (SVCV) infection, implying that they have diverse roles in antiviral immunity. Additionally, we landscaped the populations with the induced expression of interferons and other virus-responsive genes. We found that trained immunity can be effectively induced in the neutrophil and M1-macrophage subsets by vaccinating zebrafish with inactivated SVCV. Our findings illustrated the complexity and heterogeneity of the fish immune system, which will help establish a new paradigm for the improved understanding of fish immunology.


Asunto(s)
Infecciones por Rhabdoviridae , Pez Cebra , Animales , Pez Cebra/genética , Bazo , Células Endoteliales , Perfilación de la Expresión Génica
9.
PLoS Pathog ; 19(4): e1011222, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37014912

RESUMEN

Endogenous retroviruses (ERVs) are the relics of ancient retroviruses occupying a substantial fraction of vertebrate genomes. However, knowledge about the functional association of ERVs with cellular activities remains limited. Recently, we have identified approximately 3,315 ERVs from zebrafish at genome-wide level, among which 421 ERVs were actively expressed in response to the infection of Spring viraemia of carp virus (SVCV). These findings demonstrated the previously unrecognized activity of ERVs in zebrafish immunity, thereby making zebrafish an attractive model organism for deciphering the interplay among ERVs, exogenous invading viruses, and host immunity. In the present study, we investigated the functional role of an envelope protein (Env38) derived from an ERV-E5.1.38-DanRer element in zebrafish adaptive immunity against SVCV in view of its strong responsiveness to SVCV infection. This Env38 is a glycosylated membrane protein mainly distributed on MHC-II+ antigen-presenting cells (APCs). By performing blockade and knockdown/knockout assays, we found that the deficiency of Env38 markedly impaired the activation of SVCV-induced CD4+ T cells and thereby led to the inhibition of IgM+/IgZ+ B cell proliferation, IgM/IgZ Ab production, and zebrafish defense against SVCV challenge. Mechanistically, Env38 activates CD4+ T cells by promoting the formation of pMHC-TCR-CD4 complex via cross-linking MHC-II and CD4 molecules between APCs and CD4+ T cells, wherein the surface subunit (SU) of Env38 associates with the second immunoglobin domain of CD4 (CD4-D2) and the first α1 domain of MHC-IIα (MHC-IIα1). Notably, the expression and functionality of Env38 was strongly induced by zebrafish IFNφ1, indicating that env38 acts as an IFN-stimulating gene (ISG) regulated by IFN signaling. To the best of our knowledge, this study is the first to identify the involvement of an Env protein in host immune defense against an exogenous invading virus by promoting the initial activation of adaptive humoral immunity. It improved the current understanding of the cooperation between ERVs and host adaptive immunity.


Asunto(s)
Retrovirus Endógenos , Enfermedades de los Peces , Infecciones por Rhabdoviridae , Rhabdoviridae , Animales , Pez Cebra , Inmunidad Humoral , Inmunoglobulina M , Enfermedades de los Peces/genética
10.
Aging Dis ; 13(6): 1919-1938, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36465184

RESUMEN

Mesenchymal stromal/stem cells (MSCs) have been considered an attractive source of cytotherapy due to their promising effects on treating various diseases. Allogeneic MSCs (allo-MSCs) are extensively used in clinical trials due to their convenient preparation and credible performance. Traditionally, allo-MSCs are considered immunoprivileged with minimal immunogenicity and potent immunomodulatory capacity. However, growing evidence has suggested that allo-MSCs also induce immune response and cause rejection after transplantation, but the underlying cellular and molecular mechanisms remain to be elucidated. Here, we demonstrated that allografted MSCs upregulated MHC-II upon stimulation of IFN-γ in hepatic inflammatory environment by using mouse model of CCl4-induced liver injury. MHC-II upregulation enhanced the immunogenicity of allo-MSCs, leading to the activation of alloreactive T cells and rejection of allo-MSCs. However, MHC-II deficiency impaired the allogenic reactivity, thereby rescuing the loss of allo-MSCs. Mechanistically, CD4+ cytotoxic T lymphocytes (CTLs), rather than CD8+ CTLs, acted as the major effector for allo-MSC rejection. Under liver injury condition, the transplanted allo-MSCs upregulated CD80 and PD-L1, and CD8+ CTLs highly expressed CTLA-4 and PD-1, thereby inducing immune tolerance of CD8+ T cells to allo-MSCs. On the contrary, CD4+ CTLs minimally expressed CTLA-4 and PD-1; thus, they remain cytotoxic to allo-MSCs. Consequently, transplantation of MHC-II-deficient allo-MSCs substantially promoted their therapeutic effects in treating liver injury. This study revealed a novel mechanism of MSC allograft rejection mediated by CD4+ CTLs in injured liver, which provided new strategies for improving clinical performance of allo-MSCs in benefiting hepatic injury repair.

11.
Front Oncol ; 12: 1009948, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36263222

RESUMEN

Sustaining proliferative signaling and enabling replicative immortality are two important hallmarks of cancer. The complex of cyclin-dependent kinase (CDK) and its cyclin plays a decisive role in the transformation of the cell cycle and is also critical in the initiation and progression of cancer. CRIF1, a multifunctional factor, plays a pivotal role in a series of cell biological progresses such as cell cycle, cell proliferation, and energy metabolism. CRIF1 is best known as a negative regulator of the cell cycle, on account of directly binding to Gadd45 family proteins or CDK2. In addition, CRIF1 acts as a regulator of several transcription factors such as Nur77 and STAT3 and partly determines the proliferation of cancer cells. Many studies showed that the expression of CRIF1 is significantly altered in cancers and potentially regarded as a tumor suppressor. This suggests that targeting CRIF1 would enhance the selectivity and sensitivity of cancer treatment. Moreover, CRIF1 might be an indispensable part of mitoribosome and is involved in the regulation of OXPHOS capacity. Further, CRIF1 is thought to be a novel target for the underlying mechanism of diseases with mitochondrial dysfunctions. In summary, this review would conclude the latest aspects of studies about CRIF1 in cancers and mitochondria-related diseases, shed new light on targeted therapy, and provide a more comprehensive holistic view.

12.
J Virol ; 96(16): e0079122, 2022 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-35913215

RESUMEN

Spring viremia of carp virus (SVCV) is a severe infectious pathogen that causes high rates of mortality in cyprinids and other fish species. Despite numerous investigations of SVCV infection, the underlying molecular mechanisms remain poorly understood. In this study, we found that the SVCV matrix protein (SVCV-M) played an inhibitory role in the host interferon (IFN) response by targeting the MAVS/TRAF3 signaling axis, thereby uncovering a previously unrecognized mechanism of SVCV escape from host innate antiviral immunity. Mechanistically, SVCV-M was located at the mitochondria independent of MAVS, which allowed SVCV-M to build an arena for competition with the MAVS platform. A microscale thermophoresis assay showed that SVCV-M had a high affinity for TRAF3, as indicated by a lower equilibrium dissociation constant (KD) value than that of MAVS with TRAF3. Therefore, the association of MAVS with TRAF3 was competitively impaired by SVCV-M in a dose-dependent manner. Accordingly, SVCV-M showed a potent ability to inhibit the K63-linked polyubiquitination of TRAF3. This inhibition was accompanied by the impairment of the IFN response, as shown by the marked decline in IFN-φ1-promoter (pro) luciferase reporter activity. By constructing truncated TRAF3 and SVCV-M proteins, the RING finger, zinc finger, and coiled-coil domains of TRAF3 and the hydrophobic-pocket-like structure formed by the α2-, α3-, and α4-helices of SVCV-M may be the major target and antagonistic modules responsible for the protein-protein interaction between the TRAF3 and SVCV-M proteins. These findings highlighted the intervention of SVCV-M in host innate immunity, thereby providing new insights into the extensive participation of viral matrix proteins in multiple biological activities. IMPORTANCE The matrix protein of SVCV (SVCV-M) is an indispensable structural element for nucleocapsid condensation and virion formation during viral morphogenesis, and it connects the core nucleocapsid particle to the outer membrane within the mature virus. Previous studies have emphasized the architectural role of SVCV-M in viral construction; however, the potential nonstructural functions of SVCV-M in viral replication and virus-host interactions remain poorly understood. In this study, we identified the inhibitory role of the SVCV-M protein in host IFN production by competitively recruiting TRAF3 from the MAVS signaling complex and impairing TRAF3 activation via inhibition of K63-linked polyubiquitination. This finding provided new insights into the regulatory role of SVCV-M in host innate immunity, which highlighted the broader functionality of rhabdovirus matrix protein apart from being a structural protein. This study also revealed a previously unrecognized mechanism underlying SVCV immune evasion by inhibiting the IFN response by targeting the MAVS/TRAF3 signaling axis.


Asunto(s)
Carpas , Infecciones por Rhabdoviridae/veterinaria , Rhabdoviridae/fisiología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Inmunidad Innata , Interferones/metabolismo , Infecciones por Rhabdoviridae/inmunología , Factor 3 Asociado a Receptor de TNF/genética , Factor 3 Asociado a Receptor de TNF/metabolismo , Proteínas de la Matriz Viral/metabolismo , Viremia/veterinaria
13.
J Immunol ; 208(12): 2686-2701, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35675955

RESUMEN

The establishment of an appropriate costimulatory phenotype is crucial for dendritic cells (DCs) to maintain a homeostatic state with optimal immune surveillance and immunogenic activities. The upregulation of CD80/86 and CD40 is a hallmark costimulatory phenotypic switch of DCs from a steady state to an activated one for T cell activation. However, knowledge of the regulatory mechanisms underlying this process remains limited. In this study, we identified a Zbtb46 homolog from a zebrafish model. Zbtb46 deficiency resulted in upregulated cd80/86 and cd40 expression in kidney marrow-derived DCs (KMDCs) of zebrafish, which was accompanied with a remarkable expansion of CD4+/CD8+ T cells and accumulation of KMDCs in spleen of naive fish. Zbtb46 -/- splenic KMDCs exhibited strong stimulatory activity for CD4+ T cell activation. Chromatin immunoprecipitation-quantitative PCR and mass spectrometry assays showed that Zbtb46 was associated with promoters of cd80/86 and cd40 genes by binding to a 5'-TGACGT-3' motif in resting KMDCs, wherein it helped establish a repressive histone epigenetic modification pattern (H3K4me0/H3K9me3/H3K27me3) by organizing Mdb3/organizing nucleosome remodeling and deacetylase and Hdac3/nuclear receptor corepressor 1 corepressor complexes through the recruitment of Hdac1/2 and Hdac3. On stimulation with infection signs, Zbtb46 disassociated from the promoters via E3 ubiquitin ligase Cullin1/Fbxw11-mediated degradation, and this reaction can be triggered by the TLR9 signaling pathway. Thereafter, cd80/86 and cd40 promoters underwent epigenetic reprogramming from the repressed histone modification pattern to an activated pattern (H3K4me3/H3K9ac/H3K27ac), leading to cd80/86 and cd40 expression and DC activation. These findings revealed the essential role of Zbtb46 in maintaining DC homeostasis by suppressing cd80/86 and cd40 expression through epigenetic mechanisms.


Asunto(s)
Linfocitos T CD8-positivos , Pez Cebra , Animales , Antígeno B7-1/genética , Antígeno B7-1/metabolismo , Antígenos CD40 , Moléculas de Adhesión Celular/metabolismo , Células Dendríticas , Epigénesis Genética , Activación de Linfocitos
14.
Dev Comp Immunol ; 134: 104460, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35667467

RESUMEN

CD40 and CD154 are well-characterized costimulatory molecules involved in adaptive humoral immunity in humans and other mammals. These two costimulatory molecules were found to be originated from teleost fish during vertebrate evolution. However, the functionality of fish CD40 and CD154 remains to be explored. In this study, we identified the CD40 and CD154 homologs (LcCD40 and LcCD154) from large yellow croaker (Larimichthys crocea), a marine species of the perciform fish family. The LcCD40 and LcCD154 share conserved structural features to their mammalian counterparts, and are widely expressed in immune-relevant tissues and leukocytes at different transcriptional levels. Immunofluorescence staining and FCM analysis showed that LcCD40 and LcCD154 proteins are distributed on MHC-II+ APCs and CD4-2+ T cells, and are significantly upregulated in response to antigen stimulation. Co-IP assay exhibited strong association between LcCD40 and LcCD154 proteins. Blockade of LcCD154 with anti-LcCD154 antibody (Ab) or recombinant soluble LcCD40-Ig fusion protein remarkably decreased the MHC-II+ APC-initiated CD4+ T cell response upon Aeromonas hydrophila stimulation, and alloreactive T cell activation as examined by mixed lymphocyte reaction (MLR). These findings highlight the costimulatory role of LcCD40 and LcCD154 in T cell activities in Larimichthys crocea. Thus, the CD40 and CD154 costimulators may extensively participate in the regulation of multiple T cell-mediated immune responses in teleost fish. It is anticipated that this study would provide a cross-species understanding of the evolutionary history of CD40 and CD154 costimulatory signals from fish to mammals.


Asunto(s)
Perciformes , Linfocitos T , Animales , Antígenos CD40/genética , Ligando de CD40/genética , Interleucina-2 , Activación de Linfocitos , Mamíferos
15.
Front Immunol ; 13: 901672, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35707538

RESUMEN

Macrophages originating from the yolk sac or bone marrow play essential roles in tissue homeostasis and disease. Bone marrow-derived monocytes differentiate into Ly6Chi and Ly6Clo macrophages according to the differential expression of the surface marker protein Ly6C. Ly6Chi and Ly6Clo cells possess diverse functions and transcriptional profiles and can accelerate the disease process or support tissue repair and reconstruction. In this review, we discuss the basic biology of Ly6Chi and Ly6Clo macrophages, including their origin, differentiation, and phenotypic switching, and the diverse functions of Ly6Chi and Ly6Clo macrophages in homeostasis and disease, including in injury, chronic inflammation, wound repair, autoimmune disease, and cancer. Furthermore, we clarify the differences between Ly6Chi and Ly6Clo macrophages and their connections with traditional M1 and M2 macrophages. We also summarize the limitations and perspectives for Ly6Chi and Ly6Clo macrophages. Overall, continued efforts to understand these cells may provide therapeutic approaches for disease treatment.


Asunto(s)
Macrófagos , Monocitos , Humanos , Inflamación/metabolismo , Recuento de Leucocitos , Cicatrización de Heridas
16.
Immunohorizons ; 6(5): 283-298, 2022 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-35589132

RESUMEN

Retinoic acid-inducible gene I (RIG-I) is an important cytosolic pattern recognition receptor crucial for sensing RNA virus infection and initiating innate immune responses. However, the participation of RIG-I in cellular development under physiological conditions remains limited. In this study, the regulatory role of RIG-I in embryonic hematopoiesis was explored in a zebrafish model. Results showed that rig-I was ubiquitously expressed during embryogenesis at 24 h postfertilization (hpf). A defect in RIG-I remarkably disrupted the emergence of primitive hematopoietic precursors and subsequent myeloid and erythroid lineages. In contrast, RIG-I deficiency did not have an influence on the generation of endothelial precursors and angiogenesis and the development of mesoderm and adjacent tissues. The alteration in these phenotypes was confirmed by whole-mount in situ hybridization with lineage-specific markers. In addition, immunostaining and TUNEL assays excluded the abnormal proliferation and apoptosis of hematopoietic precursors in RIG-I-deficient embryos. Mechanistically, RIG-I regulates primitive hematopoiesis through downstream IFN signaling pathways, as shown by the decline in ifnφ2 and ifnφ3 expression, along with rig-I knockdown, and rescue of the defects of hematopoietic precursors in RIG-I-defective embryos after administration with ifnφ2 and ifnφ3 mRNAs. Additionally, the defects of hematopoietic precursors in RIG-I morphants could be efficiently rescued by the wild-type RIG-I but could not be restored by the RNA-binding-defective RIG-I with site mutations at the RNA-binding pocket, which are essential for association with RNAs. This finding suggested that endogenous RNAs may serve as agonists to activate RIG-I-modulated primitive hematopoiesis. This study revealed the functional diversity of RIG-I under physiological conditions far beyond that previously known.


Asunto(s)
Proteínas de Pez Cebra , Pez Cebra , Animales , Desarrollo Embrionario , Hematopoyesis/genética , ARN , Pez Cebra/genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
17.
Theranostics ; 12(4): 1621-1638, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35198061

RESUMEN

Background: Irradiation disrupts the vascular niche where hematopoietic stem cells (HSCs) reside, causing delayed hematopoietic reconstruction. The subsequent recovery of sinusoidal vessels is key to vascular niche regeneration and a prerequisite for hematopoietic reconstruction. We hypothesize that resident bone marrow macrophages (BM-Mφs) are responsible for repairing the HSC niche upon irradiation injury. Methods: We examined the survival and activation of BM-Mφs in C57BL/6 mice upon total body irradiation. After BM-Mφ depletion via injected clodronate-containing liposomes and irradiation injury, hematopoietic reconstruction and sinusoidal vascular regeneration were assessed with immunofluorescence and flow cytometry. Then enzyme-linked immunosorbent assay (ELISA) and flow cytometry were performed to analyze the contribution of VEGF-A released by BM-Mφs to the vascular restructuring of the HSC niche. VEGF-A-mediated signal transduction was assessed with transcriptome sequencing, flow cytometry, and pharmacology (agonists and antagonists) to determine the molecular mechanisms of Piezo1-mediated responses to structural changes in the HSC niche. Results: The depletion of BM-Mφs aggravated the post-irradiation injury, delaying the recovery of sinusoidal endothelial cells and HSCs. A fraction of the BM-Mφ population persisted after irradiation, with residual BM-Mφ exhibiting an activated M2-like phenotype. The expression of VEGF-A, which is essential for sinusoidal regeneration, was upregulated in BM-Mφs post-irradiation, especially CD206+ BM-Mφs. The expression of mechanosensory ion channel Piezo1, a response to mechanical environmental changes induced by bone marrow ablation, was upregulated in BM-Mφs, especially CD206+ BM-Mφs. Piezo1 upregulation was mediated by the effects of irradiation, the activation of Piezo1 itself, and the M2-like polarization induced by the phagocytosis of apoptotic cells. Piezo1 activation was associated with increased expression of VEGF-A and increased accumulation of NFATC1, NFATC2, and HIF-1α. The Piezo1-mediated upregulation in VEGF-A was suppressed by inhibiting the calcineurin/NFAT/HIF-1α signaling pathway. Conclusion: These findings reveal that BM-Mφs play a critical role in promoting vascular niche regeneration by sensing and responding to structural changes after irradiation injury, offering a potential target for therapeutic efforts to enhance hematopoietic reconstruction.


Asunto(s)
Médula Ósea , Células Endoteliales , Animales , Médula Ósea/metabolismo , Células de la Médula Ósea/metabolismo , Células Endoteliales/metabolismo , Canales Iónicos/metabolismo , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Factor A de Crecimiento Endotelial Vascular/metabolismo
18.
Platelets ; 33(5): 755-763, 2022 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-34697988

RESUMEN

Megakaryocytes (MKs) are the unique non-pathological cells that undergo polyploidization in mammals. The polyploid formation is critical for understanding the MK biology, and transcriptional regulation is involved in the differentiation and maturation of MKs. However, little is known about the functions of transcriptional elongation factors in the MK polyploidization. In this study, we investigated the role of transcription elongation factor EloA in the polyploidy formation during the MK differentiation. We found that EloA was highly expressed in the erythroleukemia cell lines HEL and K562. Knockdown of EloA in HEL cell line was shown to impair the phorbol myristate acetate (PMA) induced polyploidization process, which was used extensively to model megakaryocytic differentiation. Selective over-expression of EloA mutants with Pol II elongation activity partially restored the polyploidization. RNA-sequencing revealed that knockdown of EloA decelerated the transcription of genes enriched in the ERK1/2 cascade pathway. The phosphorylation activity of ERK1/2 decreased upon the EloA inhibition, and the polyploidization process of HEL was hindered when ERK1/2 phosphorylation was inhibited by PD0325901 or SCH772984. This study evidenced a positive role of EloA in HEL polyploidization upon PMA stimulation through enhanced ERK1/2 activity.


Asunto(s)
Sistema de Señalización de MAP Quinasas , Megacariocitos , Diferenciación Celular , Humanos , Megacariocitos/metabolismo , Poliploidía , Acetato de Tetradecanoilforbol/metabolismo , Acetato de Tetradecanoilforbol/farmacología
19.
Dev Comp Immunol ; 128: 104312, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34767880

RESUMEN

The BTLA and HVEM are two well-characterized immune checkpoint inhibitors in humans and other mammalian species. However, the occurrence and functionality of these two molecules in non-mammalian species remain poorly understood. In the present study, we identified the BTLA and HVEM homologs from large yellow croaker (Larimichthys crocea), an economically important marine species of the perciform fish family. The Larimichthys crocea BTLA and HVEM (LcBTLA and LcHVEM) share conserved structural features to their mammalian counterparts, and they were expressed in various tissues and cells examined at different transcriptional levels, with particular abundance in immune-relevant tissues and splenic leukocytes. Immunofluorescence staining and flow cytometry analysis showed that LcHVEM and LcBTLA proteins were distributed on MHC-II+ APCs and CD4-2+ T cells, and a strong interaction between LcBTLA and LcHVEM was detected in splenic leukocytes in the mixed lymphocyte reaction (MLR). By blockade assays using anti-LcBTLA and anti-LcHVEM Abs as well as recombinant soluble LcBTLA and LcHVEM proteins in different combinations, it was found that LcBTLA-LcHVEM interactions play an important inhibitory role in the activation of alloreactive T cells using MLR as a model, and APC-initiated antigen-specific CD4-2+ T cells in response to A. hydrophila (A. h) stimulation. These observations highlight the extensive functional roles of LcBTLA and LcHVEM immune-checkpoint inhibitors in allogeneic T cell reactions, and CD4-2+ T cell-mediated adaptive immune responses in Larimichthys crocea. Thus, the BTLA-HVEM checkpoint may represent an ancient coinhibitory pathway, which was originated in fish and was conserved from fish to mammals throughout the vertebrate evolution.


Asunto(s)
Perciformes , Miembro 14 de Receptores del Factor de Necrosis Tumoral , Animales , Activación de Linfocitos , Mamíferos , Perciformes/metabolismo , Receptores Inmunológicos/metabolismo , Miembro 14 de Receptores del Factor de Necrosis Tumoral/genética , Miembro 14 de Receptores del Factor de Necrosis Tumoral/metabolismo , Linfocitos T
20.
Microbiol Spectr ; 9(3): e0225421, 2021 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-34908463

RESUMEN

Endogenous retroviruses (ERVs) occupy a substantial fraction of mammalian genomes. However, whether ERVs extensively exist in ancient vertebrates remains unexplored. Here, we performed a genome-wide characterization of ERVs in a zebrafish (Danio rerio) model. Approximately 3,315 ERV-like elements (DrERVs) were identified as Gypsy, Copia, Bel, and class I-III groups. DrERVs accounted for approximately 2.3% of zebrafish genome and were distributed in all 25 chromosomes, with a remarkable bias on chromosome 4. Gypsy and class I are the two most abundant groups with earlier insertion times. The vast majority of the DrERVs have varied structural defects. A total of 509 gag and 71 env genes with coding potentials were detected. The env-coding elements were well-characterized and classified into four subgroups. A ERV-E4.8.43-DanRer element shows high similarity with HERV9NC-int in humans and analogous sequences were detected in species spanning from fish to mammals. RNA-seq data showed that hundreds of DrERVs were expressed in embryos and tissues under physiological conditions, and most of them exhibited stage and tissue specificity. Additionally, 421 DrERVs showed strong responsiveness to virus infection. A unique group of DrERVs with immune-relevant genes, such as fga, ddx41, ftr35, igl1c3, and tbk1, instead of intrinsic viral genes were identified. These DrERVs are regulated by transcriptional factors binding at the long terminal repeats. This study provided a survey of the composition, phylogeny, and potential functions of ERVs in a fish model, which benefits the understanding of the evolutionary history of ERVs from fish to mammals. IMPORTANCE Endogenous retroviruses (ERVs) are relics of past infection that constitute up to 8% of the human genome. Understanding the genetic evolution of the ERV family and the interplay of ERVs and encoded RNAs and proteins with host function has become a new frontier in biology. Fish, as the most primitive vertebrate host for retroviruses, is an indispensable integral part for such investigations. In the present study, we report the genome-wide characterization of ERVs in zebrafish, an attractive model organism of ancient vertebrates from multiple perspectives, including composition, genomic organization, chromosome distribution, classification, phylogeny, insertion time, characterization of gag and env genes, and expression profiles in embryos and tissues. The result helps uncover the evolutionarily conserved and fish-specific ERVs, as well as the immune-relevant ERVs in response to virus infection. This study demonstrates the previously unrecognized abundance, diversification, and extensive activity of ERVs at the early stage of ERV evolution.


Asunto(s)
Retrovirus Endógenos/genética , Retrovirus Endógenos/aislamiento & purificación , Pez Cebra/genética , Pez Cebra/virología , Animales , Cromosomas/virología , Retrovirus Endógenos/clasificación , Retrovirus Endógenos/fisiología , Evolución Molecular , Productos del Gen gag/genética , Productos del Gen gag/metabolismo , Variación Genética , Genoma , Humanos , Filogenia , Integración Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...