Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 5177, 2023 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-37620358

RESUMEN

Adenosylcobalamin (AdoCbl), a biologically active form of vitamin B12 (coenzyme B12), is one of the most complex metal-containing natural compounds and an essential vitamin for animals. However, AdoCbl can only be de novo synthesized by prokaryotes, and its industrial manufacturing to date was limited to bacterial fermentation. Here, we report a method for the synthesis of AdoCbl based on a cell-free reaction system performing a cascade of catalytic reactions from 5-aminolevulinic acid (5-ALA), an inexpensive compound. More than 30 biocatalytic reactions are integrated and optimized to achieve the complete cell-free synthesis of AdoCbl, after overcoming feedback inhibition, the complicated detection, instability of intermediate products, as well as imbalance and competition of cofactors. In the end, this cell-free system produces 417.41 µg/L and 5.78 mg/L of AdoCbl using 5-ALA and the purified intermediate product hydrogenobyrate as substrates, respectively. The strategies of coordinating synthetic modules of complex cell-free system describe here will be generally useful for developing cell-free platforms to produce complex natural compounds with long and complicated biosynthetic pathways.


Asunto(s)
Vitamina B 12 , Vitaminas , Animales , Sistema Libre de Células , Ácido Aminolevulínico , Biocatálisis
2.
ACS Synth Biol ; 12(4): 1339-1348, 2023 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-36924041

RESUMEN

Hydrogenobyrinic acid, a modified tetrapyrrole composed of eight five-carbon compounds, is a key intermediate and central framework of vitamin B12. Synthesis of hydrogenobyrinic acid requires eight S-adenosyl-methionine working as the methyl group donor catalyzed by 12 enzymes including six methyltransferases, causing the great shortage of S-adenosyl-methionine and accumulation of S-adenosyl-homocysteine, which is uneconomic and unsustainable for the cascade reaction. Here, we report a cell-free synthetic system for producing hydrogenobyrinic acid by integrating 12 enzymes using 5-aminolevulininate as a substrate and develop a novel S-adenosyl-methionine regeneration system to steadily supply S-adenosyl-methionine and avoid the accumulated inhibition of S-adenosyl-homocysteine by consuming a cheaper substrate (l-methionine and polyphosphate). By combination of the reaction system optimization and S-adenosyl-methionine regeneration, the titer of hydrogenobyrinic acid was improved from 0.61 to 29.39 mg/L in a 12 h reaction period, representing an increase of 48.18-fold, raising an efficient and rapidly evolutional alternative method to produce high-value-added compounds and intermediate products.


Asunto(s)
Metionina , S-Adenosilmetionina , Homocisteína , Metiltransferasas/genética , Sistema Libre de Células
3.
Sheng Wu Gong Cheng Xue Bao ; 37(3): 923-938, 2021 Mar 25.
Artículo en Chino | MEDLINE | ID: mdl-33783158

RESUMEN

Bacillus subtilis is a model strain for studying the physiological and biochemical mechanisms of microorganism, and is also a good chassis cell for industrial application to produce biological agents such as small molecule compounds, bulk chemicals, industrial enzymes, precursors of drugs and health product. In recent years, studies on metabolic engineering methods and strategies of B. subtilis have been increasingly reported, providing good tools and theoretical references for using it as chassis cells to produce biological agents. This review provides information on systematically optimizing the Bacillus subtilis chassis cell by regulating global regulatory factors, simplifying and optimizing the genome, multi-site and multi-dimensional regulating, dynamic regulating through biosensors, membrane protein engineering. For producing the protein reagent, the strain is optimized by optimizing the promoters, signal peptides, secretion components and building the expression system without chemical inducers. In addition, this review also prospects the important issues and directions that need to be focused on in the further optimization of B. subtilis in industrial production.


Asunto(s)
Bacillus subtilis , Ingeniería Metabólica , Bacillus subtilis/genética , Proteínas Bacterianas/genética , Biotecnología , Regiones Promotoras Genéticas , Señales de Clasificación de Proteína/genética
4.
Synth Syst Biotechnol ; 5(4): 245-251, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32775709

RESUMEN

The Gram-positive model bacterium Bacillus subtilis, has been broadly applied in various fields because of its low pathogenicity and strong protein secretion ability, as well as its well-developed fermentation technology. B. subtilis is considered as an attractive host in the field of metabolic engineering, in particular for protein expression and secretion, so it has been well studied and applied in genetic engineering. In this review, we discussed why B. subtilis is a good chassis cell for metabolic engineering. We also summarized the latest research progress in systematic biology, synthetic biology and evolution-based engineering of B. subtilis, and showed systemic metabolic engineering expedite the harnessing B. subtilis for bioproduction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...