Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Neurooncol ; 154(2): 145-157, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34432197

RESUMEN

PURPOSE: Due to the recent rise in immunotherapy research to treat glioblastoma (GBM), immunocompetent mouse models have become increasingly crucial. However, the character and kinetics of the immune response against the most prevalent immunocompetent GBM models, GL261 and CT2A, have not been well studied, nor has the impact of commonly-used marker proteins and foreign antigens. METHODS: In this study, we compared the immune response in these models using flow cytometry and immunohistochemistry as well as investigated several factors that influence the immune response, including kinetics, tumor size, and expression of commonly-used marker proteins and foreign antigens. We hypothesize that these factors influence the immune response enough to warrant consideration when studying new immunotherapeutic approaches for GBM. RESULTS: CT2A-Luc, but not GL261-Luc2, drastically increased the number of T cells in the brain compared with wild-type controls, and significantly altered CT2A's responsiveness to anti-PD-1 antibody therapy. Additionally, a larger cell inoculum size in the GL261 model increased the T cell response's magnitude at day 28 post-injection. CT2A and GL261 models both stimulate a peak T cell immune response at day 21 post-injection. CONCLUSIONS: Our results suggest that the impact of foreign proteins like luciferase on the intracranial immune response is dependent upon the model, with CT2A being more sensitive to added markers. In particular, luciferase expression in CT2A could lead to meaningful misinterpretations of results from immune checkpoint inhibitor (ICI) studies.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , Inmunidad Adaptativa , Animales , Neoplasias Encefálicas/terapia , Línea Celular Tumoral , Glioblastoma/terapia , Glioma/terapia , Luciferasas , Ratones , Ratones Endogámicos C57BL
2.
Mol Ther ; 29(4): 1585-1601, 2021 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-33333291

RESUMEN

Suicide gene therapies provide a unique ability to target cancer cells selectively, often based on modification of viral tropism or transcriptional regulation of therapeutic gene expression. We designed a novel suicide gene therapy approach wherein the gene product (herpes simplex virus thymidine kinase or yeast cytosine deaminase) is phosphorylated and stabilized in expression by the extracellular signal-regulated kinase (ERK), which is overactive in numerous cancers with elevated expression or mutation of receptor tyrosine kinases or the GTPase RAS. In contrast to transcriptional strategies for selectivity, regulation of protein stability by ERK allows for high copy expression via constitutive viral promoters, while maintaining tumor selectivity in contexts of elevated ERK activity. Thus, our approach turns a signaling pathway often coopted by cancer cells for survival into a lethal disadvantage in the presence of a chimeric protein and prodrug, as highlighted by a series of in vitro and in vivo examples explored here.


Asunto(s)
Citosina Desaminasa/genética , Genes Transgénicos Suicidas/genética , Terapia Genética , Neoplasias/terapia , Timidina Quinasa/genética , Animales , Citosina Desaminasa/farmacología , Quinasas MAP Reguladas por Señal Extracelular/genética , Vectores Genéticos/genética , Xenoinjertos , Humanos , Ratones , Neoplasias/genética , Neoplasias/patología , Simplexvirus/enzimología , Timidina Quinasa/farmacología , Células Tumorales Cultivadas , Proteínas ras/genética
3.
Cell Rep ; 30(10): 3383-3396.e7, 2020 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-32160544

RESUMEN

SPRY2 is a purported tumor suppressor in certain cancers that promotes tumor growth and resistance to receptor tyrosine kinase inhibitors in glioblastoma. Here, we identify a SPRY2-dependent bypass signaling mechanism in glioblastoma that drives resistance to EGFR and MET inhibition. In glioblastoma cells treated with EGFR and MET inhibitors, SPRY2 expression is initially suppressed but eventually rebounds due to NF-κB pathway activation, resultant autocrine FGFR activation, and reactivation of ERK, which controls SPRY2 transcription. In cells where FGFR autocrine signaling does not occur and ERK does not reactivate, or in which ERK reactivates but SPRY2 cannot be expressed, EGFR and MET inhibitors are more effective at promoting death. The same mechanism also drives acquired resistance to EGFR and MET inhibition. Furthermore, tumor xenografts expressing an ERK-dependent bioluminescent reporter engineered for these studies reveal that this bypass resistance mechanism plays out in vivo but can be overcome through simultaneous FGFR inhibition.


Asunto(s)
Resistencia a Antineoplásicos , Glioblastoma/tratamiento farmacológico , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas c-myc/antagonistas & inhibidores , Receptores de Factores de Crecimiento de Fibroblastos/metabolismo , Transducción de Señal , Animales , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Femenino , Factores de Crecimiento de Fibroblastos/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Genes Reporteros , Glioblastoma/genética , Glioblastoma/patología , Humanos , Ligandos , Ratones Desnudos , Modelos Biológicos , FN-kappa B/metabolismo , Fosforilación/efectos de los fármacos , Inhibidores de Proteínas Quinasas/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-myc/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos
4.
Oncotarget ; 10(18): 1716-1728, 2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30899443

RESUMEN

The cholesterol-lowering statins have known anti-cancer effects, but the mechanisms and how to utilize statins in oncology have been unclear. We noted in the CellMiner database that statin activity against cancer lines correlated with higher expression of TGF-ß target genes such as SERPINE1 and ZYX. This prompted us to assess whether statins affected TGF-ß activity in glioblastoma (GBM), a cancer strongly influenced by TGF-ß and in dire need of new therapeutic approaches. We noted that statins reduced TGF-ß activity, cell viability and invasiveness, Rho/ROCK activity, phosphorylation and activity of the TGF-ß mediator Smad3, and expression of TGF-ß targets ZYX and SERPINE1 in GBM and GBM-initiating cell (GIC) lines. Statins were most potent against GBM, GIC, and other cancer cells with high TGF-ß activity, and exogenous TGF-ß further sensitized mesenchymal GICs to statins. Statin toxicity was rescued by addition of exogenous mevalonolactone or geranylgeranyl pyrophosphate, indicating that the observed effects reflected inhibition of HMG CoA-reductase by the statins. Simvastatin significantly inhibited the growth of subcutaneous GIC grafts and prolonged survival in GIC intracranially grafted mice. These results indicate where the statins might best be applied as adjunct therapies in oncology, against GBM and other cancers with high TGF-ß activity, and have implications for other statin roles outside of oncology.

5.
Neuro Oncol ; 20(2): 192-202, 2018 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-29048560

RESUMEN

Background: The mesenchymal phenotype in glioblastoma (GBM) and other cancers drives aggressiveness and treatment resistance, leading to therapeutic failure and recurrence of disease. Currently, there is no successful treatment option available against the mesenchymal phenotype. Methods: We classified patient-derived GBM stem cell lines into 3 subtypes: proneural, mesenchymal, and other/classical. Each subtype's response to the inhibition of diacylglycerol kinase alpha (DGKα) was compared both in vitro and in vivo. RhoA activation, liposome binding, immunoblot, and kinase assays were utilized to elucidate the novel link between DGKα and geranylgeranyltransferase I (GGTase I). Results: Here we show that inhibition of DGKα with a small-molecule inhibitor, ritanserin, or RNA interference preferentially targets the mesenchymal subtype of GBM. We show that the mesenchymal phenotype creates the sensitivity to DGKα inhibition; shifting GBM cells from the proneural to the mesenchymal subtype increases ritanserin activity, with similar effects in epithelial-mesenchymal transition models of lung and pancreatic carcinoma. This enhanced sensitivity of mesenchymal cancer cells to ritanserin is through inhibition of GGTase I and downstream mediators previously associated with the mesenchymal cancer phenotype, including RhoA and nuclear factor-kappaB. DGKα inhibition is synergistic with both radiation and imatinib, a drug preferentially affecting proneural GBM. Conclusions: Our findings demonstrate that a DGKα-GGTase I pathway can be targeted to combat the treatment-resistant mesenchymal cancer phenotype. Combining therapies with greater activity against each GBM subtype may represent a viable therapeutic option against GBM.


Asunto(s)
Neoplasias Encefálicas/tratamiento farmacológico , Diacilglicerol Quinasa/antagonistas & inhibidores , Glioblastoma/patología , Ritanserina/farmacología , Animales , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Diacilglicerol Quinasa/genética , Femenino , Humanos , Ratones Endogámicos BALB C , FN-kappa B/metabolismo , Transducción de Señal/efectos de los fármacos
6.
Oncotarget ; 8(33): 55319-55331, 2017 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-28903422

RESUMEN

Glioblastoma (GBM) is the most common and lethal brain tumor. Gene expression profiling has classified GBM into distinct subtypes, including proneural, mesenchymal, and classical, and identifying therapeutic vulnerabilities of these subtypes is an extremely high priority. We leveraged The Cancer Genome Atlas (TCGA) data, in particular for microRNA expression, to seek druggable core pathways in GBM. The E2F1-regulated miR-17˜92 cluster and its analogs are shown to be highly expressed in proneural GBM and in GSC lines, suggesting the E2F cell cycle pathway might be a key driver in proneural GBM. Consistently, CDK4/6 inhibition with palbociclib preferentially inhibited cell proliferation in vitro in a majority of proneural GSCs versus those of other subtypes. Palbociclib treatment significantly prolonged survival of mice with established intracranial xenografts of a proneural GSC line. We show that most of these sensitive PN GSCs expressed higher levels of CDK6 and had intact Rb1, while two GSC lines with CDK4 overexpression and null Rb1 were highly resistant to palbociclib. Importantly, palbociclib treatment of proneural GSCs upregulated mesenchymal-associated markers and downregulated proneural-associated markers, suggesting that CDK4/6 inhibition induced proneural-mesenchymal transition and underscoring the enhanced role of the E2F cell cycle pathway in the proneural subtype. Lastly, the combination of palbociclib and N,N-diethylaminobenzaldehyde, an inhibitor of the mesenchymal driver ALDH1A3, showed strong synergistic inhibitory effects against proneural GSC proliferation. Taken together, our results reveal that proneural GBM has increased vulnerability to CDK4/6 inhibition, and the proneural subtype undergoes dynamic reprogramming upon palbociclib treatment-suggesting the need for a combination therapeutic strategy.

7.
Clin Cancer Res ; 23(22): 6958-6968, 2017 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-28814434

RESUMEN

Purpose: Glioblastoma (GBM) is a deadly brain tumor marked by dysregulated signaling and aberrant cell-cycle control. Molecular analyses have identified that the CDK4/6-Rb-E2F axis is dysregulated in about 80% of GBMs. Single-agent CDK4/6 inhibitors have failed to provide durable responses in GBM, suggesting a need to combine them with other agents. We investigate the efficacy of the combination of CDK4/6 inhibition and mTOR inhibition against GBM.Experimental Design: Preclinical in vitro and in vivo assays using primary GBM cell lines were performed.Results: We show that the CDK4/6 inhibitor palbociclib suppresses the activity of downstream mediators of the mTOR pathway, leading to rebound mTOR activation that can be blocked by the mTOR inhibitor everolimus. We further show that mTOR inhibition with everolimus leads to activation of the Ras mediator Erk that is reversible with palbociclib. The combined treatment strongly disrupts GBM metabolism, resulting in significant apoptosis. Further increasing the utility of the combination for brain cancers, everolimus significantly increases the brain concentration of palbociclib.Conclusions: Our findings demonstrate that the combination of CDK4/6 and mTOR inhibition has therapeutic potential against GBM and suggest it should be evaluated in a clinical trial. Clin Cancer Res; 23(22); 6958-68. ©2017 AACR.


Asunto(s)
Quinasa 4 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 6 Dependiente de la Ciclina/antagonistas & inhibidores , Glioblastoma/metabolismo , Glioblastoma/patología , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Animales , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Caspasa 3/metabolismo , Caspasa 7/metabolismo , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Sinergismo Farmacológico , Everolimus/farmacología , Femenino , Glioblastoma/tratamiento farmacológico , Humanos , Ratones , Modelos Biológicos , Piperazinas/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Piridinas/farmacología , Transducción de Señal/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
8.
Mol Cell Biol ; 35(1): 303-17, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25368381

RESUMEN

Breast cancer metastasis suppressor 1 (BRMS1) is downregulated in non-small cell lung cancer (NSCLC), and its reduction correlates with disease progression. Herein, we investigate the mechanisms through which loss of the BRMS1 gene contributes to epithelial-to-mesenchymal transition (EMT). Using a short hairpin RNA (shRNA) system, we show that loss of BRMS1 promotes basal and transforming growth factor beta-induced EMT in NSCLC cells. NSCLC cells expressing BRMS1 shRNAs (BRMS1 knockdown [BRMS1(KD)]) display mesenchymal characteristics, including enhanced cell migration and differential regulation of the EMT markers. Mesenchymal phenotypes observed in BRMS1(KD) cells are dependent on RelA/p65, the transcriptionally active subunit of nuclear factor kappa B (NF-κB). In addition, chromatin immunoprecipitation analysis demonstrates that loss of BRMS1 increases Twist1 promoter occupancy of RelA/p65 K310-a key histone modification associated with increased transcription. Knockdown of Twist1 results in reversal of BRMS1(KD)-mediated EMT phenotypic changes. Moreover, in our animal model, BRMS1(KD)/Twist1(KD) double knockdown cells were less efficient in establishing lung tumors than BRMS1(KD) cells. Collectively, this study demonstrates that loss of BRMS1 promotes malignant phenotypes that are dependent on NF-κB-dependent regulation of Twist1. These observations offer fresh insight into the mechanisms through which BRMS1 regulates the development of metastases in NSCLC.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares/metabolismo , Subunidad p50 de NF-kappa B/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Represoras/metabolismo , Proteína 1 Relacionada con Twist/metabolismo , Animales , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Línea Celular Tumoral , Supervivencia Celular , Transición Epitelial-Mesenquimal , Genes Supresores de Tumor , Histonas/metabolismo , Humanos , Metástasis Linfática , Ratones , Ratones Desnudos , Metástasis de la Neoplasia , Trasplante de Neoplasias , Proteínas Nucleares/genética , Fenotipo , ARN Interferente Pequeño/metabolismo , Proteínas Represoras/genética , Factor de Crecimiento Transformador beta/metabolismo , Proteína 1 Relacionada con Twist/genética , Cicatrización de Heridas
9.
PLoS One ; 9(4): e95869, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24763730

RESUMEN

Expression of the breast cancer metastasis suppressor 1 (BRMS1) protein is dramatically reduced in non-small cell lung cancer (NSCLC) cells and in primary human tumors. Although BRMS1 is a known suppressor of metastasis, the mechanisms through which BRMS1 functions to regulate cell migration and invasion in response to specific NSCLC driver mutations are poorly understood. To experimentally address this, we utilized immortalized human bronchial epithelial cells in which p53 was knocked down in the presence of oncogenic K-RasV12 (HBEC3-p53KD-K-RasV12). These genetic alterations are commonly found in NSCLC and are associated with a poor prognosis. To determine the importance of BRMS1 for cytoskeletal function, cell migration and invasion in our model system we stably knocked down BRMS1. Here, we report that loss of BRMS1 in HBEC3-p53KD-K-RasV12 cells results in a dramatic increase in cell migration and invasion compared to controls that expressed BRMS1. Moreover, the loss of BRMS1 resulted in additional morphological changes including F-actin re-distribution, paxillin accumulation at the leading edge of the lamellapodium, and cellular shape changes resembling mesenchymal phenotypes. Importantly, re-expression of BRMS1 restores, in part, cell migration and invasion; however it does not fully reestablish the epithelial phenotype. These finding suggests that loss of BRMS1 results in a permanent, largely irreversible, mesenchymal phenotype associated with increased cell migration and invasion. Collectively, in NSCLC cells without p53 and expression of oncogenic K-Ras our study identifies BRMS1 as a key regulator required to maintain a cellular morphology and cytoskeletal architecture consistent with an epithelial phenotype.


Asunto(s)
Células Epiteliales Alveolares/metabolismo , Proteínas de Neoplasias/fisiología , Proteínas Proto-Oncogénicas/genética , Proteína p53 Supresora de Tumor/genética , Proteínas ras/genética , Citoesqueleto de Actina/metabolismo , Animales , Carcinogénesis/genética , Línea Celular Tumoral , Movimiento Celular , Transición Epitelial-Mesenquimal , Técnicas de Silenciamiento del Gen , Humanos , Ratones Desnudos , Mutación , Paxillin/metabolismo , Fenotipo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas p21(ras) , Proteínas Represoras , Proteínas ras/metabolismo
10.
Cancer Discov ; 3(7): 782-97, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23558954

RESUMEN

Although diacylglycerol kinase α (DGKα) has been linked to several signaling pathways related to cancer cell biology, it has been neglected as a target for cancer therapy. The attenuation of DGKα activity via DGKα-targeting siRNA and small-molecule inhibitors R59022 and R59949 induced caspase-mediated apoptosis in glioblastoma cells and in other cancers, but lacked toxicity in noncancerous cells. We determined that mTOR and hypoxia-inducible factor-1α (HIF-1α) are key targets of DGKα inhibition, in addition to its regulation of other oncogenes. DGKα regulates mTOR transcription via a unique pathway involving cyclic AMP. Finally, we showed the efficacy of DGKα inhibition with short hairpin RNA or a small-molecule agent in glioblastoma and melanoma xenograft treatment models, with growth delay and decreased vascularity. This study establishes DGKα as a central signaling hub and a promising therapeutic target in the treatment of cancer.


Asunto(s)
Neoplasias Encefálicas/genética , Diacilglicerol Quinasa/genética , Glioblastoma/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Apoptosis/efectos de los fármacos , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Diacilglicerol Quinasa/antagonistas & inhibidores , Regulación Neoplásica de la Expresión Génica , Glioblastoma/patología , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Terapia Molecular Dirigida , Piperidinas/administración & dosificación , Pirimidinonas/administración & dosificación , Quinazolinonas/administración & dosificación , ARN Interferente Pequeño , Tiazoles/administración & dosificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...