Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Chemistry ; 27(32): 8337-8343, 2021 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-33847024

RESUMEN

Oxygen defects and hollow structures positively impact pseudocapacitive properties of diffusion/surface-controlled processes, a component of critical importance when building high-performance supercapacitors. Hence, we fabricated hollow nickel/cobalt molybdate rods with O-defects (D-H-NiMoO4 @CoMoO4 ) through a soft-template and partial reduction method, enhancing D-H-NiMoO4 @CoMoO4 's electrochemical performance, yielding a specific capacitance of 1329 F g-1 , and demonstrating excellent durability with 95.8 % capacity retention after 3000 cycles. D-H-NiMoO4 @CoMoO4 was used as the positive electrode to construct an asymmetric supercapacitor, displaying an energy density of up to 34.13 Wh kg-1 and demonstrating good predisposition towards practical applications. This work presents an effective approach to fabricate and use hollow nickel/cobalt molybdate rods with O-defects as pseudocapacitor material for high-performance capacitive energy storage devices.

2.
Chem Asian J ; 15(11): 1750-1755, 2020 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-32307903

RESUMEN

A three-dimensional (3D) hollow CoWO4 composite grown on Ni-foam (3D-H CoWO4 /NF) based on a flower-like metal-organic framework (MOF) is designed by utilizing a facile dipping and hydrothermal approach. The 3D-H CoWO4 /NF not only possesses large specific areas and rich active sites, but also accommodates volume expansion/contraction during charge/discharge processes. In addition, the unique structure facilitates fast electron/ion transport of 3D-H CoWO4 /NF. Meanwhile, a series of characterization measurements demonstrate the appropriate morphology and excellent electrochemical performance of the material. The 3D-H CoWO4 /NF possesses a high specific capacitance of 1395 F g-1 , an excellent cycle stability with 89% retention after 3000 cycles and superior rate property. Furthermore, the 3D-H CoWO4 /NF can be used as a cathode to configurate an asymmetric supercapacitor (ASC), and 3D-H CoWO4 /NF//AC shows a good energy density (29.0 W h kg-1 ). This work provides a facile method for the preparation of 3D-hollow electrode materials with high electrochemical capability for advanced energy storage devices.

3.
J Colloid Interface Sci ; 568: 130-138, 2020 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-32088443

RESUMEN

Binary transition metal oxides as electroactive materials have continuously aroused grumous attention due to their high theoretical specific capacitance, high valtage window, and multiple oxidation states. However, the tiny specific surface area, poor conductivity and unsatisfactory cycle stability limit their practical application. Hence, a synthetic strategy is designed to fabricate a dual-tasking hollow cube nickel ferrite (NiFe2O4) - based composite (NiFe2O4-NiCo-LDH@rGO) with hierarchical structure. The composite is constructed by firstly preparing hollow NiFe2O4 from cube-like Ni - Fe bimetallic organic framework (NiFe-MOF), and then integrating nickel cobalt layered double hydroxide (NiCo-LDH) nanowires, together with reduced graphene oxide (rGO) via pyrolysis in conjuction with hydrothermal method. The NiFe2O4 possessing cubic hollow structure contributes to a huge accessible surface area, meanwhile alleviates large volume expansion/contraction effect, which facilitates suffcient permeation of the electrolyte and rapid ion/charge transport, and results in high cycling stability. The introduction of layered NiCo-LDH results in hierarchical structure and thus offers maximum contact areas with electrolyte, which heightens the specific capacitance of obtained composite and enhances the electro-catlytic activity towards oxidation of glucose. Furthermore, rGO layer greatly improves the electrical conductivity and ion diffusion/transport capability of composite. Benefiting from the unique structure and individual components of NiFe2O4-NiCo-LDH@rGO composite, the electrode delivers a high specific capacitance (750 C g-1) and superb durability. Simultaneously, the asymmetrical device based on NiFe2O4-NiCo-LDH@rGO as positive electrode delivers remarkable energy density (50 Wh kg-1). Moreover, NiFe2O4-NiCo-LDH@rGO exhibits good sensing performance with a sensitivity of 111.86 µA/µM cm-2, the wide linear range of 3.500 × 10-5 - 4.525 × 10-3 M, and the detection limit of 12.94 × 10-6 M with a signal to noise ratio of 3. Consequently, the NiFe2O4-NiCo-LDH@rGO could provide a prospective notion constructing bifunctional materials with hollow-cube hierarchical structure in the field of supercapacitors and electrochemical sensors.

4.
Dalton Trans ; 48(34): 13026-13033, 2019 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-31403634

RESUMEN

Mo-Based crystalline polyoxometalate-based metal-organic frameworks (POMOFs), namely, [CuIH2(C12H12N6)(PMo12O40)]·[(C6H15N)(H2O)2] (1) and [Cu(C12H12N6)4(PMoMoO39)] (2) (C12H12N6, 1,4-bis(triazol-1-ylmethyl) benzene, abbreviation btx) as promising capacitor electrode materials were synthesized by a hydrothermal reaction. Compound 1 consisted of two-dimensional (2D) lattice structures with free triethylamine (abbreviation, TEA) molecules and H2O molecules, and compound 2 showed a 3D host-guest structure, in which 1D polyoxometalate (POM) chains were encapsulated into a 3D Cu(ii)-btx metal-organic framework (MOF). The compound 1-based electrode showed much higher specific capacitance (249.0 F g-1 at 3 A g-1) than the 2-based one (154.5 F g-1 at 3 A g-1). Moreover, the specific capacitance of the 1-based electrode was not only higher than those of the majority of the reported POMOF materials as supercapacitors, but also higher than those of most state-of-the-art MOF-based and POM-based supercapacitor electrode materials. This superior capacitance performance of the 1-based electrode could be attributed to the high redox capacity and excellent electronic conductivity. More importantly, this work may open a new avenue for optimizing the performance of POMOF-based capacitor electrode materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...