RESUMEN
The integration of photoelectrochemical photoanodes and solar cells to build an unbiased solar-to-hydrogen (STH) conversion system provides a promising way to solve the energy crisis. The key point is to develop highly transparent photoanodes, while its bulk separation efficiency (ηsep. ) and surface injection efficiency are as high as possible. To resolve this contradiction, first a novel CdIn2 S4 /In2 S3 bulk heterojunctions in the interior of nanosheets is designed as a photoanode with high transparency and an ultrahigh ηsep. up to 90%. Furthermore, decorating the ultrathin amorphous SnO2 layer by atomic layer deposition, the surface oxygen-evolution kinetics of the photoanode are increased significantly. As a result, the onset potential of the photoanode shifts negatively to 0.02 V vs RHE, and the photocurrent density boosts to 2.98 mA cm-2 at 1.23 V vs RHE, which is ten times higher than that of pristine CdIn2 S4 . Such a high-performance photoanode enables the integrated metal sulfide photoanode-perovskite solar cell system to deliver a STH conversion efficiency of 3.3%.
RESUMEN
A semiconductor underlayer(s) has been extensively used to improve the performance of photoelectrochemical (PEC) cells. Unfortunately, in many cases, the incorporation of underlayers leads to degraded system performances. A comprehensive study on the functions and manipulations of underlayers is therefore of high significance for achieving high-performance PEC cells. This study indicates that Sn-doped hematite photoanodes decorated with various underlayer materials show substantially distinguished photocurrent responses, leading to qualitatively different PEC cells. With an optimized TiO2 (ITO, Al2O3) underlayer, the photocurrent density at 1.23 V versus RHE can be enhanced from 0.25 to 0.71 (0.59, 0.42) mA cm-2, while it is decreased to 0.14 mA cm-2 by using NiO. Our further analysis reveals that the performance differences come mainly from the distinguished bulk and surface carrier recombination effects, i.e., (1) metal doping (i.e., Ti4+, In3+ and Al3+) from the underlayers improves the conductivity of hematite film and thus reduces the bulk recombination; (2) the underlayers of TiO2, ITO and Al2O3 can effectively suppress the carrier recombination at the bottom/top surfaces of the hematite layer, while the NiO underlayer leads to a higher surface recombination. Our work provides a basis for selecting an underlayer and a general guideline for the interface engineering for high performance photoelectrodes.
RESUMEN
Hematite (α-Fe2O3) material is regarded as a promising candidate for solar-driven water splitting because of the low cost, chemical stability, and appropriate bandgap; however, the corresponding system performances are limited by the poor electrical conductivity, short diffusion length of minority carrier, and sluggish oxygen evolution reaction. Here, we introduce the in situ Sn doping into the nanoworm-like α-Fe2O3 film with ultrasonic spray pyrolysis method. We show that the current density at 1.23 V vs. RHE (Jph@1.23V) under one-sun illumination can be improved from 10 to 130 µA/cm2 after optimizing the Sn dopant density. Moreover, Jph@1.23V can be further enhanced 25-folds compared to the untreated counterpart via the post-rapid thermal process (RTP), which is used to introduce the defect doping of oxygen vacancy. Photoelectrochemical impedance spectrum and Mott-Schottky analysis indicate that the performance improvement can be ascribed to the increased carrier density and the decreased resistances for the charge trapping on the surface states and the surface charge transferring into the electrolyte. X-ray photoelectron spectrum and X-ray diffraction confirm the existence of Sn and oxygen vacancy, and the potential influences of varying levels of Sn doping and oxygen vacancy are discussed. Our work points out one universal approach to efficiently improve the photoelectrochemical performances of the metal oxide semiconductors.
RESUMEN
Improving bulk- or surface-properties has been found as an effective route to regulate and enhance the photoelectrochemical (PEC) performances of some metal-oxide photoelectrodes. However, both bulk and surface self-improvement resulting from the photocharging (PC) effect is rarely reported and as a result the underlying mechanism of the PC effect is not fully understood. Here, we demonstrate that the hematite photoanode integrated with Sn doping and a TiO2 underlayer shows a substantial increase in the photocurrent density (i.e., from 0.69 to 1.12 mA cm-2 at 1.23 V relative to the standard hydrogen electrode) and a cathodic shift of the onset potential after being irradiated by a one-sun simulator for 12 h. The primary reasons for these can be categorized into two fundamental factors: (1) the enhanced bulk conductivity and the resulting decrease in carrier bulk recombination from the gradually increasing ratio of Fe2+ and Fe3+; (2) the reduced carrier surface recombination from the photogenerated passivation layer. Ultimately, both the bulk and surface electrical properties of the hematite photoanode are substantially self-improved under continuous irradiation. This work deepens the understanding of the PC effect and proves that it is a promising technique for the PEC-performance enhancement of the hematite photoanode.
RESUMEN
The challenges in fabricating two-dimensional metallic nanostructures over large areas, which normally involve expensive and time-consuming nanofabrication techniques, have severely limited the exploration of the related applications based on plasmon-induced effects. Here, we cost-efficiently prepared large-area Au nanocube arrays (NCAs) using only the electrostatic forces between colloidal Au nanocubes and polyelectrolyte layers. This method provides a flexible way for obtaining controlled Au NCAs with various fill fractions and single-cube sizes. When the Au NCAs were arranged to be coupled with a continuous Au film, the plasmonic gap mode could be excited and manipulated, leading to significant and tunable light absorbance from the visible to the near-infrared parts of the spectrum. Besides, the as-prepared Au NCAs were used to construct a prototype refractive-index (RI) sensor, which exhibited excellent stability and sensitivity over 560 nm per RI unit.