Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-35198030

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) is a prevalent chronic liver disease. The Hugan Qingzhi formula (HGQZ) has been proven effective in treating NAFLD through clinical and pharmacological mechanism studies. A screening study of the chemical components was carried out to better control the quality of this formula. Current research has combined biological activity assessment with chemical analysis to screen and identify the bioactive compounds in HGQZ for use as potential quality markers (Q-markers) to control the quality of this herbal product. The HGQZ extracted by three different solvents was evaluated in a free fatty acid-induced hepatic steatosis LO2 cell model. Simultaneously, the twelve major chemical constituents of these extracts were quantitatively measured by ultrahigh-performance liquid chromatography coupled with triple quadrupole mass spectrometry (UHPLC-QQQ-MS/MS). Extraction with 50% ethanol showed the most potent lipid-lowering effect in steatosis LO2 cells and the highest extraction rate of major chemical constituents. Correlation analysis was used to establish the relationship between the biological activities and chemical characteristics of these extracts. The results showed that the contents of typhaneoside, hyperoside, isoquercitrin, isorhamnetin-3-O-neohesperidoside, notoginsenoside R1, and alisol B 23-acetate were positively correlated to the lipid-lowering effect. The subsequent bioassay confirmed that typhaneoside, isoquercitrin, and alisol B 23-acetate played the role of reducing the lipid effect. In conclusion, 50% of ethanol extraction produced the most active extract of HGQZ. Typhaneoside, isoquercitrin, and alisol B 23-acetate could be considered potential Q-markers for the quality control of HGQZ.

2.
Nan Fang Yi Ke Da Xue Xue Bao ; 38(11): 1277-1287, 2018 Nov 30.
Artículo en Chino | MEDLINE | ID: mdl-30514673

RESUMEN

OBJECTIVE: To investigate the effects of sera from rats fed with Huganqingzhi tablets (HGT) on endoplasmic reticulum (ER) stress in a steatotic hepatocyte model of free fatty acids (FFAs)-induced nonalcoholic fatty liver disease (NAFLD) and explore the possible mechanism. METHODS: FFAs prepared by mixing oleic acid and palmitic acid at the ratio of 2:1. HepG2 cells were treated with the sera from rats fed with low-, moderate-or high-dose HGT (HGT sera) or sera of rats fed with fenofibrate (fenofibrate sera), followed by treatment with 1 mmol/L FFAs for 24 h to induce hepatic steatosis. Oil red O staining was used to observe the distribution of lipid droplets in the cells. The biochemical parameters including triglyceride (TG), lactated hydrogenase (LDH), aspartate aminotransferase (AST) and alanine aminotransferase (ALT) were measured using a commercial kit. The morphological changes of the ER in the cells were observed using transmission electron microscopy. The protein/mRNA expressions of ER stress-related signal molecules including GRP78, PERK, p-PERK, ATF6, ATF4, CASPASE-12, CHOP, XBP-1, PKC, and p-PKC-δ were detected using Western blotting and/or quantitative real-time PCR (qRT-PCR). The changes in the protein expressions of GRP78, p-PERK, CASPASE-12 and CHOP were also detected in cells with transient transfection of PKC-δ siRNA for PKC-δ knockdown. RESULTS: Compared with the control cells, the cells treated with FFAs showed significantly increased levels of TG, AST, and ALT (P < 0.05). Compared with FFAs-treated cells, the cells pretreated with HGT sera or fenofibrate sera all showed significantly decreased TG, AST and ALT levels (P < 0.05), reduced accumulation of the lipid droplets (P < 0.05), and lowered protein or mRNA expression levels of GRP78, p-PERK, ATF6, ATF4, CHOP, CASPASE-12, XBP-1 and p-PKC-δ (P < 0.05). PKC-δ knockdown caused significantly reduced protein expressions of GRP78, p-PERK, CASPASE-12 and CHOP in the cells with FFA-induced hepatic steatosis (P < 0.001); treatment with high-dose HGT serum more significantly reduced the expressions of GRP78 (P < 0.001) and P-PERK (P < 0.01) in FFAs-induced cells with PKC-δ knockdown. CONCLUSIONS: HGT serum can effectively prevent FFAs-induced steatosis in HepG2 cells by alleviating ER stress, in which PKC-δ may act as an important target.


Asunto(s)
Medicamentos Herbarios Chinos/administración & dosificación , Estrés del Retículo Endoplásmico/efectos de los fármacos , Enfermedad del Hígado Graso no Alcohólico/prevención & control , Suero , Alanina Transaminasa/sangre , Animales , Aspartato Aminotransferasas/sangre , Modelos Animales de Enfermedad , Retículo Endoplásmico/ultraestructura , Chaperón BiP del Retículo Endoplásmico , Ácidos Grasos no Esterificados , Fenofibrato/administración & dosificación , Células Hep G2 , Humanos , Hipolipemiantes/administración & dosificación , Microscopía Electrónica de Transmisión , Enfermedad del Hígado Graso no Alcohólico/sangre , Enfermedad del Hígado Graso no Alcohólico/etiología , ARN Mensajero/sangre , Ratas , Comprimidos , Triglicéridos/sangre
3.
J Ethnopharmacol ; 212: 208-215, 2018 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-29031784

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Hugan Qingzhi tablet (HQT), a traditional Chinese medicine formula has been adopted for preventing and treating nonalcoholic fatty liver disease (NAFLD). AIM: In order to explore the anti-NAFLD mechanisms of HQT, iTRAQ-based proteomic was employed to investigate the expression profiles of proteins in NAFLD rats induced by high-fat diet after HQT treatment. MATERIALS AND METHODS: The NAFLD rat model was administrated with high-fat diet (HFD) for 12weeks. HQT was administrated in a daily basis to the HFD groups. Biochemical markers, liver histology, pro-inflammatory cytokines, and oxidative stress/antioxidant biomarkers were assayed to evaluate HQT effects in HFD-induced NAFLD rats. Furthermore, the combined strategy of iTRAQ labeling with strong cation exchange-non-liquid chromatography-tandem mass spectrometry (SCX-non-LC-MS/MS) analysis were employed to explore the mechanisms of HQT's protective effect against NAFLD in rats. Western blotting was performed to verify the proteomic results. RESULTS: The histopathologic characteristics and biochemical data showed that HQT exhibited protective effects on HFD-induced NAFLD rats. After being analyzed by the combined strategy of iTRAQ with LC-MS/MS and subsequent investigation, we identified 275 differentially expressed proteins in the HFD group, compared to the control; 207 altered proteins in the HQT high dose + HFD group, compared to the HFD group; and 316 altered proteins in the HQT high dose + HFD group, compared to the control. Based on the Kyoto Encyclopedia of Gene and Genomes (KEGG) pathway mapping, the conclusion has reached that several pathways including microbial metabolism in diverse environments, fatty acid metabolism, inflammatory response, oxidative stress, bile secretion, and peroxisome proliferator activated receptor (PPAR) signaling pathway were closely related to the effects of HQT in HFD-induced NAFLD in rats. Furthermore, several differentially expressed proteins, including phytanoyl-CoA 2-hydroxylase (PHYH), acyl-CoA synthetase 1 long chain (ACSL1), hemopexin, Alpha-1-acid glycoprotein (ORM1), fatty acid binding protein 4 (FABP4), soluble sulphotransferase 2a1 (Sult2a1), and argininosuccinate synthase 1 (ASS1) were verified by the western blotting analysis and these results were consistent with the data obtained from the proteomics analysis. CONCLUSIONS: Our results not only confirm that Hugan Qingzhi exhibits a significant protective effect in HFD-induced NAFLD rats but also provide a better understanding for the treatments of NAFLD.


Asunto(s)
Medicamentos Herbarios Chinos/farmacología , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Proteómica/métodos , Animales , Dieta Alta en Grasa , Metabolismo de los Lípidos/efectos de los fármacos , Masculino , Enfermedad del Hígado Graso no Alcohólico/inducido químicamente , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley
4.
Data Brief ; 15: 612-614, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29085877

RESUMEN

The data presented in this article are related to the research article entitled "Isobarictags for relative and absolute quantitation (iTRAQ) -based proteomics for the investigation of the effect of HuganQingzhi on non-alcoholic fatty liver disease in rats" (Yao et al., 2017) [1]. This article describes the effect of HuganQingzhi on non-alcoholic fatty liver disease in rats at the level of the proteome (HFD: control, HH: control, HH: HFD, respectively). The field dataset is available to criticize or extended analyzes in public.

5.
Front Pharmacol ; 8: 99, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28293193

RESUMEN

In previous research, Hugan Qingzhi, a traditional Chinese medicine, was shown to have protective effects against hepatic steatosis. However, its activity against non-alcoholic fatty liver disease (NAFLD) and the mechanisms by which it exerts its effects remain unknown. In the present study, the effects of Hugan Qingzhi on free fatty acid (FFA)-induced L02 cells were examined. The techniques of iTRAQ labeling, together with strong cation exchange-non-liquid chromatography-tandem mass spectrometry (SCX-non-LC-MS/MS) analysis and serum pharmacology, were used to evaluate the effects of Hugan Qingzhi-medicated serum on FFA-induced L02 hepatocyte injury. Results identified 355 differentially expressed proteins following FFA treatment, compared with a control group; 359 altered proteins in the Hugan Qingzhi high dose + FFA treatment group, compared with the FFA treatment group; and 365 altered proteins in the Hugan Qingzhi high dose + FFA treatment group, compared with the control group. Based on the Kyoto Encyclopedia of Gene and Genomes pathway enrichment analysis, it is concluded that several pathways including those of microbial metabolism in diverse environments, fatty acid metabolism, peroxisome proliferator activated receptor signaling, and mitogen-activated protein kinase signaling are closely associated with the effects of Hugan Qingzhi-medicated serum in FFA-induced L02 hepatocyte injury. Furthermore, several differentially expressed proteins, including heat shock protein 27 (HSP27), acetyl-CoA acetyltransferase 1, calnexin, and integrin-linked kinase, were validated by western blotting. A target-specific HSP27 siRNA was used to investigate further the function of HSP27, and it was found that HSP27 might have a key role in the observable effects of Hugan Qingzhi-medicated serum in FFA-induced L02 hepatocyte injury. The results not only confirmed that Hugan Qingzhi exhibits a significant protective effect in FFA-induced L02 hepatocyte injury, but also suggest insights into the mechanism of such protective effects.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...