Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 9551, 2023 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-37308548

RESUMEN

It is a great physical challenge to achieve controlled nuclear fusion in magnetic confinement tokamak and solve energy shortage problem for decades. In tokamak plasma, large-scale plasma instability called disruption will halt power production of reactor and damage key components. Prediction and prevention of plasma disruption is extremely urgent and important. However, there is no analytical theory can elucidate plasma disruption physical mechanism yet. Here we show an analytical theory of tokamak plasma disruption based on nonextensive geodesic acoustic mode theory, which can give the physical mechanism of disruption. The proposed theory has not only been confirmed by experimental data of disruption on T-10 device, but also can explain many related phenomena around plasma disruption, filling the gap in physical mechanism of tokamak plasma disruption.

3.
Sci Rep ; 12(1): 3412, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35233047

RESUMEN

The consideration of nonextensivity effects is crucial to the accurate diagnosis of plasma parameters; common plasma nonextensive parameters include electron nonextensive parameter and ion nonextensive parameter, and the former can be measured, while the ion nonextensive parameter cannot be measured yet. Here we show the measurement of ion nonextensive parameter of plasma based on the theory of nonextensive geodesic acoustic modes. We assume that the plasma to be measured can be described by nonextensive statistical mechanics, and on this basis, the nonextensive geodesic acoustic mode theory is established. Utilizing this theory, we have measured the ion nonextensive parameter [Formula: see text] which cannot be diagnosed even by a nonextensive single electric probe. Our research points out that the proposed measurement method of ion nonextensive parameter may play a role in plasma diagnosis and will help us to grasp the nonextensivity of plasma more precisely. We hope the proposed method of ion nonextensive parameter diagnosis based on the nonextensive geodesic acoustic mode theory can be the starting point of more complex ion nonextensive parameter diagnosis methods. In addition, the measurement of ion nonextensive parameter is closely related to the study of various plasma waves, instabilities, turbulence and abnormal transport, and a defined and quantitative test of nonextensive geodesic acoustic mode theory will bound up deeply with such developments.

4.
Phys Rev E ; 101(4-1): 043206, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32422841

RESUMEN

Theoretical analysis and a large number of experiments have proved that plasma components do not satisfy Boltzmann-Gibbs statistics and can be well described by nonextensive statistical mechanics, while new plasma parameters, electron nonextensive parameters, which are introduced to describe the nonextensive properties of plasma, cannot be diagnosed yet. Here we show measurement of electron nonextensive parameters of plasma with a nonextensive single electric probe. Our results show that nonextensive electric probe may play a role in plasma diagnosis, measuring nonextensivity of plasma and improving diagnostic accuracy of other plasma parameters. We expect the proposed nonextensive single electric probe can be starting point of more complex nonextensive electric probe. In addition, nonextensive electric probe is an important means to study various plasma waves and instability, turbulence, and anomalous transport, and a definite and quantitative test of the theory of nonextensive geodetic acoustic models will be relevant to such development.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...