Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
New Phytol ; 240(6): 2386-2403, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37817383

RESUMEN

Root hair is regarded as a pivotal complementary survival tactic for mycorrhizal plant like Abies beshanzuensis when symbiosis is disrupted. Relatively little is known about the mechanism underlying root hair morphogenesis in plant species that are strongly dependent on mycorrhizal symbiosis. Many of these species are endangered, and this knowledge is critical for ensuring their survival. Here, a MYB6/bHLH13-sucrose synthase 2 (AbSUS2) module was newly identified and characterized in A. beshanzuensis using bioinformatics, histochemistry, molecular biology, and transgenesis. Functional, expression pattern, and localization analysis showed that AbSUS2 participated in sucrose synthesis and was involved in root hair initiation in A. beshanzuensis. Additionally, the major enzymatic product of AbSUS2 was found to suppress root hair initiation in vitro. Our data further showed that a complex involving the transcription factors AbMYB6 and AbbHLH13 directly interacted with the promoter of AbSUS2 and strengthened its expression, thereby inhibiting root hair initiation in response to exogenous sucrose. Our findings offer novel insights into how root hair morphogenesis is regulated in mycorrhizal plants and also provide a new strategy for the preservation of endangered mycorrhizal plant species.


Asunto(s)
Abies , Micorrizas , Micorrizas/fisiología , Simbiosis , Sacarosa/metabolismo , Azúcares/metabolismo , Raíces de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
2.
Hortic Res ; 10(3): uhad008, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36960429

RESUMEN

Grafting facilitates the interaction between heterologous cells with different genomes, resulting in abundant phenotypic variation, which provides opportunities for crop improvement. However, how grafting-induced variation occurs and is transmitted to progeny remains elusive. A graft chimera, especially a periclinal chimera, which has genetically distinct cell layers throughout the plant, is an excellent model to probe the molecular mechanisms of grafting-induced variation maintenance. Here we regenerated a plant from the T-cell layer of a periclinal chimera, TCC (where the apical meristem was artificially divided into three cell layers - from outside to inside, L1, L2, and L3; T = Tuber mustard, C = red Cabbage), named rTTT0 (r = regenerated). Compared with the control (rsTTT, s = self-grafted), rTTT0 had multiple phenotypic variations, especially leaf shape variation, which could be maintained in sexual progeny. Transcriptomes were analyzed and 58 phenotypic variation-associated genes were identified. Whole-genome bisulfite sequencing analyses revealed that the methylome of rTTT0 was changed, and the CG methylation level was significantly increased by 8.74%. In rTTT0, the coding gene bodies are hypermethylated in the CG context, while their promoter regions are hypomethylated in the non-CG context. DNA methylation changes in the leaf shape variation-associated coding genes, ARF10, IAA20, ROF1, and TPR2, were maintained for five generations of rTTT0. Interestingly, grafting chimerism also affected transcription of the microRNA gene (MIR), among which the DNA methylation levels of the promoters of three MIRs associated with leaf shape variation were changed in rTTT0, and the DNA methylation modification of MIR319 was maintained to the fifth generation of selfed progeny of rTTT0 (rTTT5). These findings demonstrate that DNA methylation of coding and non-coding genes plays an important role in heterologous cell interaction-induced variation formation and its transgenerational inheritance.

3.
Plants (Basel) ; 12(2)2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36678989

RESUMEN

Abies beshanzuensis, an extremely rare and critically endangered plant with only three wild adult trees globally, is strongly mycorrhizal-dependent, leading to difficulties in protection and artificial breeding without symbiosis. Root hair morphogenesis plays an important role in the survival of mycorrhizal symbionts. Due to the lack of an effective genome and transcriptome of A. beshanzuensis, the molecular signals involved in the root hair development remain unknown, which hinders its endangered mechanism analysis and protection. Herein, transcriptomes of radicles with root hair (RH1) and without root hair (RH0) from A. beshanzuensis in vitro plantlets were primarily established. Functional annotation and differentially expressed gene (DEG) analysis showed that the two phenotypes have highly differentially expressed gene clusters. Transcriptome divergence identified hormone and sugar signaling primarily involved in root hair morphogenesis of A. beshanzuensis. Weighted correlation network analysis (WGCNA) coupled with quantitative real-time PCR (qRT-PCR) found that two hormone-sucrose-root hair modules were linked by IAA17, and SUS was positioned in the center of the regulation network, co-expressed with SRK2E in hormone transduction and key genes related to root hair morphogenesis. Our results contribute to better understanding of the molecular mechanisms of root hair development and offer new insights into deciphering the survival mechanism of A. beshanzuensis and other endangered species, utilizing root hair as a compensatory strategy instead of poor mycorrhizal growth.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...