Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Small ; : e2405228, 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39380390

RESUMEN

Cocatalyst is of paramount significance to provide fruitful active sites for suppressing the spatial charge recombination toward boosted photocatalysis. Up to date, exploration of robust and stable cocatalysts is remained challenging. Inspired by the intrinsic merits of single-atom catalysts (SACs), such as distinctive electronic structure and high atomic utilization efficiency, single-atom/transition metal chalcogenides (TMCs) is utilized as a model to synthesize CdS-Pd single-atom catalyst (CdS-PdSA) heterostructures. This demonstrates the precise anchoring of isolated metal single-atom catalysts (SACs) onto TMCs through a simple yet effective wet-chemical strategy. The resulting heterostructures exhibit significantly enhanced and stable photocatalytic activity for selective anaerobic organic transformations and hydrogen production under visible light. This enhancement is primarily inferred due to the role of Pd SACs as electron pumps, which directionally trap the electrons photoexcited over CdS, accelerating the spatial charge separation and prolonging the carrier lifespan. The charge transport route and photocatalytic mechanism are elucidated. This work underscores the potential of SACs as cocatalysts in heterogeneous photocatalysis, offering valuable insights for the rational design of atomic-level cocatalysts for solar-to-chemical energy conversion and beyond.

2.
Small ; : e2405514, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39221645

RESUMEN

Rational construction of high-efficiency photoelectrodes with optimized carrier migration to the ideal active sites, is crucial for enhancing solar water oxidation. However, complexity in precisely modulating interface configuration and directional charge transfer pathways retards the design of robust and stable artificial photosystems. Herein, a straightforward yet effective strategy is developed for compact encapsulation of metal oxides (MOs) with an ultrathin non-conjugated polymer layer to modulate interfacial charge migration and separation. By periodically coating highly ordered TiO2 nanoarrays with oppositely charged polyelectrolyte of poly(dimethyl diallyl ammonium chloride) (PDDA), MOs/polymer composite photoanodes are readily fabricated under ambient conditions. It is verified that electrons photogenerated from the MOs substrate can be efficiently extracted by the ultrathin solid insulating PDDA layer, significantly boosting the carrier transport kinetics and enhancing charge separation of MOs, and thus triggering a remarkable enhancement in the solar water oxidation performance. The origins of the unexpected electron-withdrawing capability of such non-conjugated insulating polymer are unambiguously uncovered, and the scenario occurring at the interface of hybrid photoelectrodes is elucidated. The work would reinforce the fundamental understanding on the origins of generic charge transport capability of insulating polymer and benefit potential wide-spread utilization of insulating polymers as co-catalysts for solar energy conversion.

3.
Chem Sci ; 15(33): 13495-13505, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39183912

RESUMEN

Atomically precise metal nanoclusters (NCs) have been deemed a new generation of photosensitizers for light harvesting on account of their quantum confinement effect, peculiar atom-stacking mode, and enriched catalytic active sites. Nonetheless, to date, precise charge modulation over metal NCs has still been challenging considering their ultra-short carrier lifetime and poor stability. In this work, we conceptually demonstrate the integration of metal NCs with MXene in transition metal chalcogenide (TMC) photosystems via a progressive, exquisite, and elegant interface design to trigger tunable, precise and high-efficiency charge motion over metal NCs, stimulating a directional carrier transport pathway. In this customized ternary heterostructured photosystem, metal NCs function as light-harvesting antennas, MXene serves as a terminal electron reservoir, and the TMC substrate provides suitable energy level alignment for retracting photocarriers of metal NCs, giving rise to a spatial cascade charge transport route and markedly boosting charge separation efficiency. The interface configuration and energy level alignment engineering synergistically contribute to the considerably enhanced visible-light-driven photocatalytic CO2-to-CO reduction performance of the metal NCs/TMCs/MXene heterostructure. The intermediate active species during the photocatalytic CO2 reduction are unambiguously determined, based on which the photocatalytic mechanism is elucidated. Our work will provide an inspiring idea to bridge the gap between atomically precise metal NCs and MXene in terms of controllable charge migration for solar-to-fuel conversion.

4.
Chem Sci ; 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39184290

RESUMEN

Benefiting from their excellent light-capturing ability, suitable energy band structure and abundant active sites, transition metal chalcogenides (TMCs) have been attracting widespread attention in heterogeneous photocatalysis. Nonetheless, TMCs still suffer from sluggish charge transfer kinetics, a rapid charge recombination rate and poor stability, rendering the construction of high-performance artificial photosystems challenging. Here, a ternary dumbbell-shaped CdS/MoS2/CuS heterostructure with spatially separated catalytically active sites has been elaborately designed. In such a heterostructured nanoarchitecture, MoS2 clusters, selectively grown on both ends of the CdS nanowires (NWs), act as terminal electron collectors, while CuS nanolayers, coated on the sidewalls of CdS NWs through ion exchange, form a P-N heterojunction with the CdS NW framework, which accelerates the migration of holes from CdS to CuS, effectively suppressing the oxidation of sulfide ions and improving the stability of CdS NWs. The well-defined dumbbell-shaped CdS/MoS2/CuS ternary heterostructure provides a structural basis for spatially precise regulation of the charge migration pathway, where photogenerated electrons and holes directionally migrate to the MoS2 and CuS catalytic sites, respectively, ultimately achieving efficient carrier separation and significantly enhancing photoactivity for both photocatalytic hydrogen generation and selective organic transformation under visible light. Moreover, we have also ascertained that such ion exchange and interface configuration engineering strategies are universal. Our work features a simple yet efficient strategy for smartly designing multi-component heterostructures to precisely modulate spatially vectorial charge separation at the nanoscale for solar-to-hydrogen conversion.

5.
Chem Sci ; 15(27): 10625-10637, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38994408

RESUMEN

Solar CO2 reduction to renewable hydrocarbon fuels offers a promising pathway to carbon neutrality, but it is retarded by tough CO2 activation, complicated mechanisms, sluggish charge transport kinetics, and a scarcity of strategies for precise tuning of charge transport pathways. Herein, we first conceptually design a novel insulating polymer-mediated electron-tunneling artificial photosystem via progressive interface configuration regulation, wherein tailor-made Ag@citrate nanocrystals (NCs) are controllably self-assembled on transition metal chalcogenides (TMCs) assisted by an ultrathin insulating polymer interim layer, i.e., poly(allylamine hydrochloride) (PAH). In this multilayered nano-architecture, a solid ultra-thin insulating PAH interim layer serves as an unexpected charge tunneling mediator to stimulate smooth electron transfer from the TMC substrate to the terminal electron reservoirs of Ag@citrate NCs, engendering the tandem charge transfer route and significantly boosting the visible-light-driven photocatalytic CO2-to-syngas conversion performances. Furthermore, we have ascertained that such TMC-insulating polymer-metal NC tunneling photosystems are universal. This study would spark new inspiration for unleashing the long-term neglected charge tunneling capability of insulating polymers and diversifying non-conjugated polymer-based artificial photosystems for solar-to-fuel energy conversion.

6.
Inorg Chem ; 63(24): 11092-11101, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38843593

RESUMEN

Black phosphorus (BP), a promising two-dimensional (2D) layered semiconductor material, has gained enormous attention due to its impressive properties over the past several years. Although plenty of methods have been developed to synthesize high-quality BP, most of the currently available BP materials still suffer from unsatisfactory crystallization, purity, and stability in air, hindering their practical application. A facile approach to synthesizing ultrahigh-quality single-crystal BP is of significance to shed light on the nature of 2D semiconductor materials and their massive application. In this work, we present the facile and efficient circulating vapor growth approach to growing bulk single-crystal BP. The as-grown BP material features high crystallinity and ultrahigh purity (higher than 99.999 at %), exceeding those of all the previously reported and some commercially available BP crystals. It also maintains excellent stability in air and water after 15 consecutive days of test. Moreover, the as-synthesized BP material features good thermal stability, oxidation resistance, and excellent electrical properties, as well. This study provides a new approach for the fabrication of ultrahigh-quality BP material and thus promotes its application.

7.
Inorg Chem ; 63(19): 8970-8976, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38693870

RESUMEN

Wholly distinct from conjugated polymers which are featured by generic charge transfer capability stemming from a conjugated molecular structure, solid nonconjugated polymers mediated charge transport has long been deemed as theoretically impossible because of the deficiency of π electrons along the molecular skeleton, thereby retarding their widespread applications in solar energy conversion. Herein, we first conceptually unveil that intact encapsulation of metal oxides (e.g., TiO2, WO3, Fe2O3, and ZnO) with an ultrathin nonconjugated polyelectrolyte of branched polyethylenimine (BPEI) can unexpectedly accelerate the unidirectional charge transfer to the active sites and foster the defect generation, which contributes to the boosted charge separation and prolonged charge lifetime, ultimately resulting in considerably improved photoelectrochemical (PEC) water oxidation activities. The interfacial charge transport origins endowed by BPEI adornment are elucidated, which include acting as a hole-withdrawing mediator, promoting vacancy generation, and stimulating the directional charge flow route. We additionally ascertain that such charge transport characteristics of BPEI are universal. This work would unlock the charge transfer capability of nonconjugated polymers for solar water oxidation. The nonconjugated insulating polymer was utilized as a charge transport mediator for boosting charge migration and separation over metal oxides toward solar water oxidation.

8.
Langmuir ; 40(17): 9144-9154, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38629776

RESUMEN

Wastewater pollutants are a major threat to natural resources, with antibiotics and heavy metals being common water contaminants. By harnessing clean, renewable solar energy, photocatalysis facilitates the synergistic removal of heavy metals and antibiotics. In this paper, MXene was both a template and raw material, and MXene-derived oxide (TiO2) and SnIn4S8 Z-scheme composite materials were synthesized and characterized. The synergistic mode of photocatalytic reduction and oxidation leads to the enhanced utilization of e-/h+ pairs. The TiO2/SnIn4S8 exhibited a higher photocatalytic capacity for the simultaneous removal of tetracycline (TC) (20 mg·L-1) and Cr(VI) (15 mg·L-1). The main active substances of TC degradation and Cr(VI) reduction were identified via free radical scavengers and electron paramagnetic resonance (EPR). Additionally, the potential photocatalytic degradation route of TC was thoroughly elucidated through liquid chromatography-mass spectrometry (LC-MS).

9.
Small ; 20(35): e2400958, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38644328

RESUMEN

Quantum dots (QDs) colloidal nanocrystals are attracting enduring interest by scientific communities for solar energy conversion due to generic physicochemical merits including substantial light absorption coefficient, quantum confinement effect, enriched catalytically active sites, and tunable electronic structure. However, photo-induced charge carriers of QDs suffer from ultra-short charge lifespan and poor stability, rendering controllable vectorial charge modulation and customizing robust and stable QDs artificial photosystems challenging. Herein, tailor-made oppositely charged transition metal chalcogenides quantum dots (TMCs QDs) and MXene quantum dots (MQDs) are judiciously harnessed as the building blocks for electrostatic layer-by-layer assembly buildup on the metal oxides (MOs) framework. In these exquisitely designed LbL assembles MOs/(TMCs QDs/MQDs)n heterostructured photoanodes, TMCs QDs layer acts as light-harvesting antennas, and MQDs layer serves as electron-capturing mediator to relay cascade electrons from TMCs QDs to the MOs substrate, thereby yielding the spatially ordered tandem charge transport chain and contributing to the significantly boosted charge separation over TMCs QDs and solar water oxidation efficiency of MOs/(TMCs QDs/MQDs)n photoanodes. The relationship between interface configuration and charge transfer characteristics is unambiguously unlocked, by which photoelectrochemical mechanism is elucidated. This work would provide inspiring ideas for precisely mediating interfacial charge transfer pathways over QDs toward solar energy conversion.

10.
Chem Sci ; 15(8): 2898-2913, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38404395

RESUMEN

The core factors dictating the photocatalysis efficiency are predominantly centered on controllable modulation of anisotropic spatial charge transfer/separation and regulating vectorial charge transport pathways. Nonetheless, the sluggish charge transport kinetics and incapacity of precisely tuning interfacial charge flow at the nanoscale level are still the primary dilemma. Herein, we conceptually demonstrate the elaborate design of a cascade charge transport chain over transition metal chalcogenide-insulating polymer-cocatalyst (TIC) photosystems via a progressive self-assembly strategy. The intermediate ultrathin non-conjugated insulating polymer layer, i.e., poly(diallyl-dimethylammonium chloride) (PDDA), functions as the interfacial electron relay medium, and simultaneously, outermost co-catalysts serve as the terminal "electron reservoirs", synergistically contributing to the charge transport cascade pathway and substantially boosting the interfacial charge separation. We found that the insulating polymer mediated unidirectional charge transfer cascade is universal for a large variety of metal or non-metal reducing co-catalysts (Au, Ag, Pt, Ni, Co, Cu, NiSe2, CoSe2, and CuSe). More intriguingly, such peculiar charge flow characteristics endow the self-assembled TIC photosystems with versatile visible-light-driven photoredox catalysis towards photocatalytic hydrogen generation, anaerobic selective organic transformation, and CO2-to-fuel conversion. Our work would provide new inspiration for smartly mediating spatial vectorial charge transport towards emerging solar energy conversion.

11.
Inorg Chem ; 63(2): 1471-1479, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38173240

RESUMEN

Atomically precise metal nanoclusters (NCs) have been deemed as a new generation of metal nanomaterials because of their characteristic atomic stacking fashion, quantum confinement effect, and multitude of active sites. The discrete molecular-like energy band structure of metal NCs endows them with photosensitization capability for light harvesting and conversion. However, applications of metal NCs in photoelectrocatalysis are limited by the ultrafast charge recombination and unfavorable stability, impeding the construction of metal NC-based photosystems. In this work, we elaborately crafted multilayered metal oxide (MO)/(metal NCs/insulating polymer)n photoanodes by a facile layer-by-layer (LbL) assembly technique. In these well-defined heterostructured photoanodes, glutathione (GSH)-wrapped metal NCs (Agx@GSH, Ag9@GSH6, Ag16@GSH9, and Ag31@GSH19) and an insulating poly(allylamine hydrochloride) (PAH) layer are alternately deposited on the MO substrate in a highly ordered integration mode. We found that photoelectrons of metal NCs can be tunneled into the MO substrate via the intermediate ultrathin insulating polymer layer by stimulating the tandem charge transfer route, thus facilitating charge separation and boosting photoelectrochemical water oxidation performances. Our work would open a new frontier for judiciously regulating directional charge transport over atomically precise metal NCs for solar-to-hydrogen conversion.

12.
Small ; 20(7): e2307619, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37803332

RESUMEN

Atomically precise metal nanoclusters (NCs) have garnered tremendous attention as light-harvesting antennas in heterogeneous photocatalysis due to unique atomic stacking mode, quantum confinement effect, and enriched active sites. However, metal NCs as photosensitizers suffer from extremely short carrier lifetime, poor photostability, and difficulty in carrier migration, which hinder the wide-spread utilization of metal NCs in solar energy conversion. To solve these problems, herein, Ag-doped glutathione (GSH)-capped gold NCs, i.e., alloy Au1- x Agx @GSH NCs and non-conjugated insulating polymer of poly(diallyl-dimethylammonium chloride) (PDDA) are utilized as the building blocks for layer-by-layer assembly of spatially multilayered alloy NCs/metal oxide (MO) photosystems. The alternately deposited ultrathin PDDA layer in-between Au1- x Agx @GSH NCs on the MO substrate functions as an efficient charge flow mediator to relay the directional photoelectron transfer over Au1- x Agx @GSH NCs, giving rise to the cascade charge transfer chain. This peculiar carrier migration mode endowed by exquisite interface configuration design significantly boosts the unidirectional electron migration from the Au1- x Agx @GSH NCs to the MO substrate, substantially improving the visible-light-driven photoelectrochemical water oxidation performances of MO/(PDDA-Au1- x Agx )n multilayer heterostructured photoanodes. The work will inspire the rational construction of alloy metal NCs-based photosystems for modulating spatially controllable charge transfer pathway for solar energy conversion.

13.
Inorg Chem ; 63(1): 870-880, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38117690

RESUMEN

Solar-powered photocatalytic conversion of CO2 to hydrocarbon fuels represents an emerging approach to solving the greenhouse effect. However, low charge separation efficiency, deficiency of surface catalytic active sites, and sluggish charge-transfer kinetics, together with the complicated reaction pathway, concurrently hinder the CO2 reduction. Herein, we show the rational construction of transition metal chalcogenides (TMCs) heterostructure CO2 reduction photosystems, wherein the TMC substrate is tightly integrated with amorphous oxygen-containing cobalt sulfide (CoSOH) by a solid non-conjugated polymer, i.e., poly(vinyl alcohol) (PVA), to customize the unidirectional charge-transfer pathway. In this well-defined multilayered nanoarchitecture, the PVA interim layer intercalated between TMCs and CoSOH acts as a hole-relaying mediator and meanwhile boosts CO2 adsorption capacity, while CoSOH functions as a terminal hole-collecting reservoir, stimulating the charge transport kinetics and boosting the charge separation over TMCs. This peculiar interface configuration and charge transport characteristics endow TMC/PVA/CoSOH heterostructures with significantly enhanced visible-light-driven photoactivity and CO2 conversion. Based on the intermediates probed during the photocatalytic CO2 reduction reaction, the photocatalytic mechanism was determined. Our work would inspire sparkling ideas to mediate the charge transfer over semiconductor for solar carbon neutral conversion.

14.
Inorg Chem ; 62(47): 19358-19365, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-37965749

RESUMEN

Atomically precise metal nanoclusters (NCs) demonstrate emerging potential as a new generation of photosensitizers in photoredox catalysis. However, metal NCs suffer from intrinsic poor instability, which leads to the loss of photosensitization effect and hampers their widespread applications in heterogeneous photocatalysis. Herein, we corroborate the design of a spatially directional charge transfer pathway over transition metal chalcogenide (TMC)-based heterostructures by way of a facile and efficient electrostatic self-assembly approach. Positively charged solid-state nonconjugated insulating polymer of poly(allylamine hydrochloride) (PAH) and negatively charged glutathione (GSH) capped metal NCs [Ag9@(GSH)6] as building blocks were controllably and highly ordered anchored on the TMC substrate. It was unveiled that owing to the appropriate energy level alignment and interface configuration, photogenerated electrons over metal NCs can directionally flow to the TMC substrate with the aid of PAH, which functions as an interfacial charge transfer mediator, and simultaneously holes migrate in the opposite direction, thereby collaboratively contributing to substantially boosted charge separation and prolonged charge lifetime. Benefiting from these merits, the thus self-assembled TMCs/PAH/metal NC heterostructure unfolds conspicuously enhanced photoactivity toward anaerobic selective photocatalytic reduction of nitroaromatics to amino derivatives under visible light irradiation. This work would significantly reinforce our fundamental understanding of the charge transfer characteristic of atomically precise metal NCs and the charge-withdrawing capability of solid insulating polymers for solar energy conversion.

15.
Inorg Chem ; 62(42): 17454-17463, 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37827854

RESUMEN

Transition-metal chalcogenide quantum dots (TMCs QDs) exhibit emerging potential in the field of solar energy conversion due to large absorption coefficients for light harvesting, quantum size effect, and abundant active sites. However, fine-tuning the photoinduced charge carrier over TMCs QDs to manipulate the directional charge-transfer pathway remains challenging, considering their ultrashort charge lifetime and slow charge-transfer kinetics. To this end, herein, MoSx/PDDA/TMCs QDs heterostructures were exquisitely designed by a simple and green electrostatic self-assembly strategy under ambient conditions, wherein tailor-made negatively charged TMCs QDs stabilized by mercaptoacetic acid (MAA) were precisely self-assembled on the positively charged polydiallyl dimethylammonium chloride (PDDA)-modified MoSx nanoflowers (NFs), forming a well-defined three-dimensional heterostructured nanoarchitecture. As an electron trapping agent, an MoSx NFs cocatalyst benefits the unidirectional electron transfer from TMCs QDs to the ideal active centers on the MoSx NFs surface by tunneling the ultrathin insulating polymer interim layer, thereby boosting the charge separation efficiency and endowing self-assembled MoSx/PDDA/TMCs QDs heterostructures with considerably increased photocatalytic hydrogen evolution activity (1.96 mmol·g-1·h-1) and admirable stability under visible light irradiation. Our work will provide new insights into smart regulation of directional charge transfer over TMCs QDs-based photosystems for solar energy conversion.

16.
Inorg Chem ; 62(41): 16965-16973, 2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37794771

RESUMEN

Atomically precise alloy nanoclusters (NCs) inherit the advantages of homometal NC counterparts such as atomic stacking fashion, quantum confinement effect, and enriched catalytic active sites and simultaneously possess the advantageous physicochemical properties such as significantly enhanced photostability, ideal photosensitization efficiency, and favorable energy band structure. Nevertheless, elucidation of the roles of alloy NCs and alloy nanocrystals (NYs) in boosting solar water oxidation has so far not yet been reported owing to the deficiency of applicable alloy NC photosystems. Herein, utilizing the generic thermal-induced self-transformation of alloy NCs to alloy NYs, we comprehensively explore the photosensitization properties of glutathione (GSH)-capped alloy NCs (AgxAu1-x@GSH and CuxAu1-x@GSH) and the corresponding alloy NY (AgAu and CuAu) counterparts in solar water oxidation reaction. The results imply that photoelectrons of alloy NCs surpass the hot electrons over plasmonic alloy NYs in stimulating the PEC water oxidation reaction. The photoelectrons of alloy NCs demonstrate lower interfacial charge-transfer resistance, longer carrier lifetime, and a more enhanced photosensitization effect with respect to the plasmonic alloy NYs, contributing to the significantly boosted photoelectrochemical water oxidation activities. Moreover, we found that our result is universal.

17.
Inorg Chem ; 62(45): 18649-18659, 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-37903426

RESUMEN

Transition-metal chalcogenide quantum dots (TMC QDs) show great promise in artificial photosynthesis for excellent light-harvesting capability. Nonetheless, TMC QDs have limitations of ultrafast charge recombination rate, sluggish carrier migration kinetics, and generic photocorrosion, retarding their widespread applications. To solve these obstacles, herein, we demonstrate the stimulation of charge migration over TMC QDs with the aid of nonconjugated insulating polymer and graphene (GR) for a versatile photoredox selective organic transformation. To this end, an ultrathin insulating polymer layer, i.e., poly(allylamine hydrochloride) (PAH), grafted on the GR framework, is electrostatically intercalated at the interface of TMCs QDs and the GR framework via a self-assembly for constructing TMC QDs/PAH/GR three-dimensional spatially multilayered heterostructures. In this well-defined nanoarchitecture, TMC QDs function as a light-harvesting antenna, GR as a terminal electron reservoir, and PAH as an intermediate interfacial charge relay mediator. We ascertain that the ultrathin PAH interim layer unexpectedly fosters the photoelectron migration from TMCs QDs to the GR framework in a tunable fashion, boosting the charge separation of TMCs QDs and resulting in significantly improved photoactivities toward anaerobic reduction of aromatic nitro compounds to amino derivatives and oxidation of alcohols to aldehydes under visible light. Photoredox catalysis mechanisms of such TMC QDs/PAH/GR photosystems are elucidated, and the active species in these photoredox organic conversion reactions are comprehensively determined. Our work would open new frontiers to finely modulate the charge transport of TMCs QDs via nonconjugated insulating polymers for solar energy conversion.

18.
Small ; 19(35): e2300804, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37183292

RESUMEN

The rational design of the directional charge transfer channel represents an important strategy to finely tune the charge migration and separation in photocatalytic CO2 -to-fuel conversion. Despite the progress made in crafting high-performance photocatalysts, developing elegant photosystems with precisely modulated interfacial charge transfer feature remains a grand challenge. Here, a facile one-pot method is developed to achieve in situ self-assembly of Pd nanocrystals (NYs) on the transition metal chalcogenide (TMC) substrate with the aid of a non-conjugated insulating polymer, i.e., branched polyethylenimine (bPEI), for photoreduction of CO2 to syngas (CO/H2 ). The generic reducing capability of the abundant amine groups grafted on the molecular backbone of bPEI fosters the homogeneous growth of Pd NYs on the TMC framework. Intriguingly, the self-assembled TMCs@bPEI@Pd heterostructure with bi-directional spatial charge transport pathways exhibit significantly boosted photoactivity toward CO2 -to-syngas conversion under visible light irradiation, wherein bPEI serves as an efficient hole transfer mediator, and simultaneously Pd NYs act as an electron-withdrawing modulator for accelerating spatially vectorial charge separation. Furthermore, in-depth understanding of the in situ formed intermediates during the CO2 photoreduction process are exquisitely probed. This work provides a quintessential paradigm for in situ construction of multi-component heterojunction photosystem for solar-to-fuel energy conversion.

19.
Small ; 19(36): e2302372, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37118858

RESUMEN

Atomically precise metal nanoclusters (NCs) represent an emerging sector of light-harvesting antennas by virtue of peculiar atomic stacking fashion, quantum confinement effect, and molecular-like discrete energy band structure. Nevertheless, precise control of charge carriers over metal NCs has yet to be achieved by the short carrier lifetime and intrinsic instability of metal NCs, which renders the complexity of metal NCs-based photosystems with photoredox mechanisms remaining elusive. Herein, fine tuning of charge migration over metal NCs is demonstrated by constructing directional charge transfer channels in multilayered heterostructure enabled by a facile layer-by-layer (LbL) assembly approach, wherein oppositely charged branched poly-ethylenimine (BPEI) and glutathione (GSH)-capped gold NCs [Aux NCs, Au25 (GSH)18 NCs] are alternately deposited on the metal oxide (MOs: TiO2 , WO3 , Fe2 O3 ) substrates. TheAux (Au25 ) NCs layer serves as light-harvesting antennas for engendering charge carriers, andBPEI interim layer uniformly intercalated at the interface of Aux NCs layer constitutes the tandem hole transport channel for motivating the charge transfer cascade, resulting in the considerably enhanced photoelectrochemical water oxidation performances. Besides, poor photo-stability of Aux NCs is surmounted by stimulating the hole transfer kinetics process.

20.
Inorg Chem ; 62(15): 6138-6146, 2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-37000131

RESUMEN

Atomically precise metal nanoclusters (NCs) have emerged as feasible alternatives to traditional photosensitizers in solar energy conversion due to the unique atomic stacking mode, quantum size effect, and abundant active sites. Despite the sporadic advancement in fabricating metal NC-based photosystems, most of which are predominantly centered on Au NCs, unleashing atomically precise silver nanoclusters as light-harvesting antennas has still been in the infant stage, with the charge transfer mechanism remaining elusive. Herein, we comprehensively demonstrate the photosensitization effect of Ag NCs in the photoelectrochemical (PEC) water-splitting reaction and strictly evaluate the correlation of photosensitization efficiency with atomic architecture. To these ends, tailor-made negatively charged l-glutathione (GSH)-capped Ag NCs [Agx, Ag9(GSH)6, Ag16(GSH)9, Ag31(GSH)19] as building blocks are controllably deposited on the metal oxide (MOs = TiO2, WO3, Fe2O3) substrate by a facile self-assembly strategy. Benefiting from the highly efficient photosensitization effect of atomically precise Ag NCs, these self-assembled MOs/Ag NC heterostructured photoanodes with an elegant charge transfer interface demonstrate significantly enhanced photoelectrochemical water oxidation performances under visible-light irradiation on account of efficient charge transport from Ag NCs to the MO substrate, substantially prolonging the charge lifetime of Ag NCs. Our work would significantly inspire ongoing interest in unlocking the generic photosensitization capability of atomically precise metal NCs for solar energy conversion.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...