Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Neurorobot ; 18: 1374531, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38911604

RESUMEN

The quaternion cubature Kalman filter (QCKF) algorithm has emerged as a prominent nonlinear filter algorithm and has found extensive applications in the field of GNSS/SINS integrated attitude determination and positioning system (GNSS/SINS-IADPS) data processing for unmanned aerial vehicles (UAV). However, on one hand, the QCKF algorithm is predicated on the assumption that the random model of filter algorithm, which follows a white Gaussian noise distribution. The noise in actual GNSS/SINS-IADPS is not the white Gaussian noise but rather a ubiquitous non-Gaussian noise. On the other hand, the use of quaternions as state variables is bound by normalization constraints. When applied directly in nonlinear non-Gaussian system without considering normalization constraints, the QCKF algorithm may result in a mismatch phenomenon in the filtering random model, potentially resulting in a decline in estimation accuracy. To address this issue, we propose a novel Gaussian sum quaternion constrained cubature Kalman filter (GSQCCKF) algorithm. This algorithm refines the random model of the QCKF by approximating non-Gaussian noise with a Gaussian mixture model. Meanwhile, to account for quaternion normalization in attitude determination, a two-step projection method is employed to constrain the quaternion, which consequently enhances the filtering estimation accuracy. Simulation and experimental analyses demonstrate that the proposed GSQCCKF algorithm significantly improves accuracy and adaptability in GNSS/SINS-IADPS data processing under non-Gaussian noise conditions for Unmanned Aerial Vehicles (UAVs).

2.
Inorg Chem ; 61(43): 17115-17122, 2022 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-36256887

RESUMEN

A quaternary compound with the composition Mo3ReRuC is obtained in a previously unexplored MoReRu-Mo2C system. According to X-ray structural analysis, Mo3ReRuC crystallizes in the noncentrosymmetric space group P4132 [cubic ß-Mn-type structure, a = 6.8107(1) Å]. Below 7.7 K, Mo3ReRuC becomes a bulk type-II superconductor with an upper critical field close to the Pauli paramagnetic limit. The specific heat data give a large normalized jump ΔCp/γTc = 2.3 at Tc, which points to a strongly coupled superconducting state. First-principles calculations show that its electronic states at the Fermi level are mainly contributed by Mo, Re, and Ru atoms and strongly increased by the spin-orbit coupling. Our finding suggests that the intermediate phase between alloys and carbides may be a good place to look for ß-Mn-type noncentrosymmetric superconductors.

3.
Sensors (Basel) ; 20(5)2020 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-32182881

RESUMEN

With the development of precise positioning with multi-GNSS, the inter-system bias (ISB) has become an issue that cannot be ignored. ISB is introduced from the differences among satellite reference clocks and different receiver hardware delay biases. To analyze the characteristics of multi-GNSS ISB, the precise point positioning (PPP) with full-rank uncombined model was derived for GLONASS, BDS, GALILEO, while the GPS receiver clock was selected as the reference. In addition, a recommended ISB parameter processing model was adopted. Data of 28-days from the Multi-GNSS Experiment (MGEX) station was used to estimate and analyze the ISB parameters. Based on a statistical analysis of the acquired data, results demonstrate that: (a) The rms of multi-GNSS PPP positional bias can reach 4.6 mm, 3.4 mm and 8.5 mm for E, N and U directions, respectively, which guarantees the reliability and accuracy of the ISB parameter solution. (b) The intra-day ISB time series of the three groups is relatively stable with standard deviations less than 0.6 ns. The ISB parameters between the GALILEO and GPS system are the most stable and the standard deviation was the smallest, at about 0.37 ns, which may be related to the good signal quality of the GALILEO system. (c) The mean of the single-day solution of the ISB parameter is not stable and the amplitude of the jump can be up to 60 ns. However, each station shows a similar variation for the same ISB parameter on the same day. The situation is independent of the type of receiver and antenna; however, it may be affected by the satellite reference clock of different systems. (d) There is a clear relationship between the ISB parameters and receiver types.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...