Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Vis Exp ; (183)2022 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-35604165

RESUMEN

Calcium induced calcium release signaling (CICR) plays a critical role in many biological processes. Every cellular activity from cell proliferation and apoptosis, development and ageing, to neuronal synaptic plasticity and regeneration have been associated with Ryanodine receptors (RyRs). Despite the importance of calcium signaling, the exact mechanism of its function in early development is unclear. As an organism with a short gestational period, the embryos of Drosophila melanogaster are prime study subjects for investigating the distribution and localization of CICR associated proteins and their regulators during development. However, because of their lipid-rich embryos and chitin-rich chorion, their utility is limited by the difficulty of mounting embryos on glass surfaces. In this work, we introduce a practical protocol that significantly enhances the attachment of Drosophila embryo onto slides and detail methods for successful histochemistry, immunohistochemistry, and in-situ hybridization. The chrome alum gelatin slide-coating method and embryo pre-embedding method dramatically increases the yield in studying Drosophila embryo protein and RNA expression. To demonstrate this approach, we studied DmFKBP12/Calstabin, a well-known regulator of RyR during early embryonic development of Drosophila melanogaster. We identified DmFKBP12 in as early as the syncytial blastoderm stage and report the dynamic expression pattern of DmFKBP12 during development: initially as an evenly distributed protein in the syncytial blastoderm, then preliminarily localizing to the basement layer of the cortex during cellular blastoderm, before distributing in the primitive neuronal and digestion architecture during the three-gem layer phase in early gastrulation. This distribution may explain the critical role RyR plays in the vital organ systems that originate in from these layers: the suboesophageal and supraesophageal ganglion, ventral nervous system, and musculoskeletal system.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Calcio , Drosophila melanogaster/genética , Embrión no Mamífero , Humanos , Inmunohistoquímica , ARN
3.
Cell Biosci ; 10: 55, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32280452

RESUMEN

BACKGROUND: In the past 30 years, incidences of non-alcoholic fatty liver disease (NAFLD) has risen by 30%. However, there is still no clear mechanism or accurate method of anticipating liver failure. Here we reveal the phase transitions of liquid crystalline qualities in hepatic lipid droplets (HLDs) as a novel method of anticipating prognosis. METHODS: NAFLD was induced by feeding C57BL/6J mice on a high-fat (HiF) diet. These NAFLD livers were then evaluated under polarized microscopy, X-ray diffraction and small-angle scattering, lipid component chromatography analysis and protein expression analysis. Optically active HLDs from mouse model and patient samples were both then confirmed to have liquid crystal characteristics. Liver MAP1LC3A expression was then evaluated to determine the role of autophagy in liquid crystal HLD (LC-HLD) formation. RESULTS: Unlike the normal diet cohort, HiF diet mice developed NAFLD livers containing HLDs exhibiting Maltese cross birefringence, phase transition, and fluidity signature to liquid crystals. These LC-HLDs transitioned to anisotropic crystal at 0 °C and remain crystalline. Temperature increase to 42 °C causes both liquid crystal and crystal HLDs to convert to isotropic droplet form. These isotropic HLDs successfully transition to anisotropic LC with fast temperature decrease and anisotropic crystal with slow temperature decrease. These findings were duplicated in patient liver. Patient LC-HLDs with no inner optical activity were discovered, hinting at lipid saturation as the mechanism through which HLD acquire LC characteristics. Downregulation of MAP1LC3A in conjunction with increased LC-HLD also implicated autophagy in NAFLD LC-HLD formation. CONCLUSIONS: Increasing concentrations of amphiphilic lipids in HLDs favors organization into alternating hydrophilic and hydrophobic layers, which present as LC-HLDs. Thus, evaluating the extent of liquid crystallization with phase transition in HLDs of NAFLD patients may reveal disease severity and predict impending liver damage.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA