RESUMEN
Milk exosomes (mExos) have demonstrated significant promise as vehicles for the oral administration of protein and peptide drugs owing to their superior capacity to traverse epithelial barriers. Nevertheless, certain challenges persist due to their intrinsic characteristics, including suboptimal drug loading efficiency, inadequate mucus penetration capability, and susceptibility to membrane protein loss. Herein, a hybrid vesicle with self-adaptive surface properties (mExos@DSPE-Hyd-PMPC) was designed by fusing functionalized liposomes with natural mExos, aiming to overcome the limitations associated with mExos and unlock their full potential in oral peptide delivery. The surface property transformation of mExos@DSPE-Hyd-PMPC was achieved by introducing a pH-sensitive hydrazone bond between the highly hydrophilic zwitterionic polymer and the phospholipids, utilizing the pH microenvironment on the jejunum surface. In comparison to natural mExos, hybrid vesicles exhibited a 2.4-fold enhancement in the encapsulation efficiency of the semaglutide (SET). The hydrophilic and neutrally charged surfaces of mExos@DSPE-Hyd-PMPC in the jejunal lumen exhibited improved preservation of membrane proteins and efficient traversal of the mucus barrier. Upon reaching the surface of jejunal epithelial cells, the highly retained membrane proteins and positively charged surfaces of the hybrid vesicle efficiently overcame the apical barrier, the intracellular transport barrier, and the basolateral exocytosis barrier. The self-adaptive surface properties of the hybrid vesicle resulted in an oral bioavailability of 8.7% and notably enhanced the pharmacological therapeutic effects. This study successfully addresses some limitations of natural mExos and holds promise for overcoming the sequential absorption barriers associated with the oral delivery of peptides.
Asunto(s)
Exosomas , Liposomas , Leche , Propiedades de Superficie , Animales , Administración Oral , Exosomas/química , Exosomas/metabolismo , Liposomas/química , Leche/química , Péptidos/química , Humanos , Sistemas de Liberación de Medicamentos , Ratones , Ratas Sprague-Dawley , Ratas , MasculinoRESUMEN
Attributing to their broad pharmacological effects encompassing anti-inflammation, antitoxin, and immunosuppression, glucocorticoids (GCs) are extensively utilized in the clinic for the treatment of diverse diseases such as lupus erythematosus, nephritis, arthritis, ulcerative colitis, asthma, keratitis, macular edema, and leukemia. However, long-term use often causes undesirable side effects, including metabolic disorders-induced Cushing's syndrome (buffalo back, full moon face, hyperglycemia, etc.), osteoporosis, aggravated infection, psychosis, glaucoma, and cataract. These notorious side effects seriously compromise patients' quality of life, especially in patients with chronic diseases. Therefore, glucocorticoid-based advanced drug delivery systems for reducing adverse effects have received extensive attention. Among them, prodrugs have the advantages of low investment, low risk, and high success rate, making them a promising strategy. In this review, we propose the strategies for the design and summarize current research progress of glucocorticoid-based prodrugs in recent decades, including polymer-based prodrugs, dendrimer-based prodrugs, antibody-drug conjugates, peptide-drug conjugates, carbohydrate-based prodrugs, aliphatic acid-based prodrugs and so on. Besides, we also raise issues that need to be focused on during the development of glucocorticoid-based prodrugs. This review is expected to be helpful for the research and development of novel GCs and prodrugs.
RESUMEN
Excessive reactive oxygen species (ROS) and stressed inflammatory response are major characteristics of ulcerative colitis, which cause disease progression and aggravation. Herein, a novel mesoporous cerium oxide nanozymes (MCN) was designed and then loaded with Myeloid differentiation factor-88 (MyD88) inhibitor for synergistic treatment of colitis by scavenging ROS and regulating inflammation. This innovative MCN with average particle size of 200.7 nm, specific surface area of 119.78 m2/g and mesopores of 4.47 nm not only exhibited excellent SOD-like and CAT-like activities to scavenge ROS but also could act as a carrier to load MyD88 inhibitor, TJ-M2010-5, (abbreviated as TJ-5) into their mesopores, achieving the effect of 'two birds with one stone'. Besides, the modification of dextran sulfate sodium (TJ-5/MCN/DSS) increased the internalization of nanozymes into activated macrophages and enhanced in vitro anti-inflammatory ability. To enhance colon targeting, we coated TJ-5/MCN/DSS with the enteric material Eudragit S100, preventing premature release or absorption of the drug in the gastrointestinal tract after oral administration. The results demonstrated that TJ-5/MCN/DSS/Eudragit not only achieved delayed drug release and improved colon targeting but also exhibited optimal therapeutic efficacy in colitis mice. Mechanistically, the MCN-mediated ROS scavenging and TJ-5-mediated MyD88 blockade synergistically inhibited the NF-κB signaling pathway, thereby reducing the inflammatory response. Importantly, TJ-5/MCN/DSS/Eudragit did not induce systemic toxicity. In conclusion, our work not only presents a novel carrier capable of scavenging ROS but also provides proof of concept for the synergistic treatment of colitis using this carrier in combination with MyD88 inhibitors. This study proposes a safe and efficient strategy for targeting ROS-associated inflammation.
Asunto(s)
Colitis Ulcerosa , Animales , Ratones , Colitis Ulcerosa/tratamiento farmacológico , Colon , Sulfato de Dextran/farmacología , Sulfato de Dextran/uso terapéutico , Modelos Animales de Enfermedad , Inflamación , Factor 88 de Diferenciación Mieloide/metabolismo , Factor 88 de Diferenciación Mieloide/farmacología , FN-kappa B/metabolismo , Especies Reactivas de Oxígeno/metabolismoRESUMEN
OBJECTIVES: Metastasis is still one of the main obstacles in the treatment of breast cancer. This study aimed to develop disulfiram (DSF) and doxorubicin (DOX) co-loaded nanoparticles (DSF-DOX NPs) with enzyme/pH dual stimuli-responsive characteristics to inhibit breast cancer metastasis. METHODS: DSF-DOX NPs were prepared using the amphiphilic poly(ε-caprolactone)-b-poly(L-glutamic acid)-g-methoxy poly(ethylene glycol) (PCL-b-PGlu-g-mPEG) copolymer by a classical dialysis method. In vitro release tests, in vitro cytotoxicity assay, and anti-metastasis studies were conducted to evaluate pH/enzyme sensitivity and therapeutic effect of DSF-DOX NPs. RESULTS: The specific pH and enzyme stimuli-responsiveness of DSF-DO NPs can be attributed to the transformation of secondary structure and the degradation of amide bonds in the PGlu segment, respectively. This accelerated drug release significantly increased the cytotoxicity to 4T1 cells. Compared with the control group, the DSF-DOX NPs showed a strong inhibition of in vitro metastasis with a wound healing rate of 36.50% and a migration rate of 18.39%. Impressively, in vivo anti-metastasis results indicated that the metastasis of 4T1 cells was almost completely suppressed by DSF-DOX NPs. CONCLUSION: DSF-DOX NPs with controllable tumor site delivery of DOX and DSF were a prospectively potential strategy for metastatic breast cancer treatment.
Asunto(s)
Neoplasias de la Mama , Neoplasias Pulmonares , Nanopartículas , Humanos , Femenino , Disulfiram/farmacología , Disulfiram/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Polietilenglicoles/química , Concentración de Iones de Hidrógeno , Nanopartículas/química , Portadores de Fármacos/química , Línea Celular TumoralRESUMEN
The aim of this study was to investigate the correlation between critical granules characters (including particle size, surface roughness, and apparent porosity) and mechanical properties of press-coated tablets. Granules of a model formulation were prepared through Roll Compaction Granulation (RCG), High Shear Granulation (HSG), and Fluidized Bed Granulation (FBG) to prepare granules with different surface roughness and apparent porosity. The surface roughness and porosity of granules had a significantly greater effect on mechanical properties than the particle size of granules. Whether for brittle or plastic materials, FBG granules with the roughest surface and the greatest apparent porosity exhibited the best compression properties. The elastic recovery test, the interlayer adhesion forces study, the break pattern test, and the X-ray microcomputed tomography investigation suggested that granules with great apparent porosity and rough surfaces could contribute to the production of stable press-coated structures. Moreover, for press-coated tablets prepared using granules, the proper granules in the coat layer could eliminate the side effect of the rigid core on the mechanical strength. The above understandings will be conducive to the selection of compatible and appropriate granules characters, which can enhance mechanical properties and extend the application of press-coated tablets.
Asunto(s)
Microtomografía por Rayos X , Composición de Medicamentos/métodos , Tamaño de la Partícula , Porosidad , Comprimidos/química , Resistencia a la TracciónRESUMEN
As a potent glucocorticoid drug (GCs), Dexamethasone (Dex) is widely used clinically for the treatment of inflammatory diseases. However, such side effects as Cushing's syndrome and osteoporosis caused severe distress to patients. Herein, a sialic acid (SA)-modified dexamethasone conjugate (Dex-SA) was synthesized successfully to reduce side effects by targeting inflammatory diseases. The solubility of Dex-SA in water reached 58 times that of Dex, which meets the need for intravenous administration. The excellent stability of Dex-SA in plasma also laid a foundation for targeting disease sites. According to cellular uptake and biodistribution experiments, Dex-SA was more readily to be taken up by inflammatory cells and accumulated in diseased kidneys compared to Dex, which is attributed to the interaction of SA with E-selectin receptors overexpressed on the surface of inflammatory vascular endothelial cells. Besides, the pharmacodynamics studies of acute kidney injury showed that Dex-SA and Dex could produce comparable therapeutic effects. More importantly, Dex-SA was found to significantly reduce Dex-related side effects, as measured by blood glucose, red blood cells and immune cells, etc. At last, molecular docking results were obtained to confirm that Dex-SA could enter the cells by binding specifically with the E-selectin receptor, for combination with glucocorticoid receptors in the cytoplasm to exert pharmacological effects. Our study is expected to contribute a new strategy to the safe and effective targeting treatment of inflammatory diseases.
Asunto(s)
Glucocorticoides , Ácido N-Acetilneuramínico , Dexametasona , Selectina E/metabolismo , Células Endoteliales/metabolismo , Glucocorticoides/farmacología , Humanos , Inflamación/inducido químicamente , Simulación del Acoplamiento Molecular , Ácido N-Acetilneuramínico/química , Distribución TisularRESUMEN
To prepare Goserelin (GOS) loaded long-acting microspheres with reduced initial release and prolonged drug release time of GOS, GOS/PLGA solid dispersion (by hot-melt extrusion, HME) was dissolved/dispersed in dichloromethane (DCM) to prepare microspheres by O/W method. From results of molecular dynamics simulation, PLGA and GOS molecules completely and uniformly dissolved and dispersed in DCM, respectively. In F5 microspheres (prepared by HME-O/W method), GOS existed as molecular or amorphous state, but not aggregation. Burst release of F5 microspheres (2.75%) was similar with Zoladex™ implant (0.39%) and less than F10 microspheres (prepared by S/O/W method, 25.92%). After lag phase, GOS released rapidly from F5 microspheres and the cumulative release on the 45th days was 95.14%. After injection of F5 microspheres, GOS serum concentration was relative steady at the range of 27.64-175.27 ng/mL for nearly 35 days. AUC(0-35 day) of F5 microspheres was almost 2 times that of F10 microspheres. Pharmacodynamics study also showed potential effect of F5 microspheres on inhibiting the secretion of testosterone in male rats. HME-O/W method is potential to establish long-acting PLGA microspheres (loading water-soluble drug), exhibiting stable drug serum concentration in vivo, and without large concentration fluctuation or serious pain/side effects.
Asunto(s)
Portadores de Fármacos/química , Goserelina/farmacocinética , Ácido Poliglicólico , Animales , Ácido Láctico , Masculino , Microesferas , Tamaño de la Partícula , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , RatasRESUMEN
Breviscapine (BVP), a flavonoid compound, is widely used in the treatment of cardiovascular and cerebrovascular diseases; however, the low oral bioavailability and short half-life properties limit its application. The aim of this study was to investigate the three preparations for improving its oral bioavailability: nanosuspensions (BVP-NS), liposomes (BVP-LP) and phospholipid complexes (BVP-PLC). In vitro and in vivo results suggested that these three could all significantly improved the cumulative released amount and oral bioavailability compared with physical mixture, in which BVP-PLC was the most optimal preparation with the relative bioavailability and mean retention time of 10.79 ± 0.25 (p < 0.01) and 471.32% (p < 0.01), respectively. Furthermore, the influence of drug-lipid ratios on the in vitro release and pharmacokinetic behavior of BVP-PLC was also studied and the results showed that 1:2 drug-lipid ratio was the most satisfactory one attributed to the moderate-intensity interaction between drug and phospholipid which could balance the drug loading and drug release very well.
RESUMEN
The aim of this study was to resolve the lag time problem for peptides loaded PLGA-Hydrogel Microspheres (PLGA-gel-Ms) by blending low molecular PLGA (Mw. 1 kDa) into PLGA (Mw. 10 kDa) as an intrinsic porogen, and then assess the in vitro-in vivo relationship (IVIVR). Here, Goserelin acetate (GOS) was chosen as the model peptides. When compared to additional types of porogen, the intrinsic porogen avoided impurities remaining and protected the bioactivities of the peptides. By adding 10% PLGA (Mw. 1 kDa), the lag time was eliminated both in vitro and in vivo with a desirable EE (97.04% ± 0.51%). The release mechanisms were found to be: a) initial GOS release mainly controlled by pores diffusion and b) autocatalysis of PLGA (Mw. 1 kDa) which increased the quantity of aqueous pores, as revealed by SEM images. To solve the challenges caused by multiphasic release profiles, for the first time the Segmented phases IVIVR were proposed and developed, and showed improved linear fitting effects and supported the proposed release mechanisms. The application of PLGA blends could provide a new insight into PLGA microsphere initial release rate regulation.